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Abstract. Service-based applications are a new class of software sys-
tems that provide the basis for enterprises to build their information sys-
tems by following the principles of service-oriented architectures. These
software systems are often realized by orchestrating remote, third-party
services, to provide added-values applications that are called service com-
positions. The distributed ownership and the evolving nature of the ser-
vices involved in a service composition make verification activities cru-
cial. On a par with verification is also the problem of formally specify-
ing the interactions—with third-party services—of service compositions,
with the related issue of balancing expressiveness and support for auto-
mated verification.
This paper showcases SOLOIST, a specification language for formalizing
the interactions of service compositions. SOLOIST has been designed
with the primary objective of expressing the most significant specification
patterns found in the specifications of service-based applications. The
language is based on a many-sorted first-order metric temporal logic,
extended with new temporal modalities that support aggregate operators
for events occurring in a certain time window. We also show how, under
certain assumptions, the language can be reduced to linear temporal
logic, paving the way for using SOLOIST with established verification
techniques, both at design time and at run time.

1 Introduction

Modern-age software engineering has to deal with novel kinds of software sys-
tems, which exhibit new features that often demand for rethinking and extending
the traditional methodologies and the accompanying methods and techniques.
One class of new software systems is constituted by open-world software [5],
characterized by a dynamic and decentralized nature; service-based applica-
tions (SBAs) represent an example of this class of systems. SBAs are often de-
fined as service compositions, obtained by orchestrating—with languages such
as BPEL [2]—existing services, possibly offered by third-parties. This kind of
applications has seen a wide adoption in enterprises, which nowadays develop
their information systems using the principles of service orientation [20].
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The development of SBAs is usually spread across multiple organizations or
multiple divisions within a single organization, and promotes a loose organiza-
tional coupling between service providers and service integrators. Moreover, in
open-world software, changes are frequent, unexpected, and welcome [29]. On one
hand, services are developed, deployed, operated, and evolved (e.g., by changing
the interface, the implementation, the business protocol, or the quality of service
guarantees) autonomously by service providers. On the other hand, service in-
tegrators may leverage dynamic binding as well as self-adaptation techniques to
change a composite service at run time. These factors lead to a distributed own-
ership and to an evolving nature of service compositions, which affect the notions
of correctness, dependability and in general all quality attributes of SBAs.

Guaranteeing quality attributes of SBAs poses new challenges to the defini-
tion of verification methodologies. This challenge has been taken on in the last
years by the research community, which has proposed several techniques for the
verification of SBAs, both at design time and at run time; see for example [4,
10, 35]. Equal in importance to verification techniques are the specification lan-
guages used to express the requirements of the service interactions that one
wants to check. In most of the cases, the specification language is some logical
language, such as the CTL and LTL temporal logics and the Event Calculus, or
a domain-specific language defined to represent some non-functional attributes
(e.g., response time).

Despite significant advances in research and in prototype implementation,
these approaches did not spread to the world of practitioners. One of the rea-
sons is that proposed specification languages do not meet the expressiveness
requirements of SBAs. In a previous work [8], some of the authors performed
an extensive analysis of requirements specifications of SBAs, written both in
research settings and in industrial settings, to characterize the use of property
specifications patterns in SBAs. The results of this study showed that: a) the
majority of requirements specifications stated in industrial settings refers to spe-
cific aspects of service provisioning, which can be characterized as a new class
of specification patterns; b) the specification patterns proposed in the research
literature are barely used in industrial settings.

The outcome of the study described in [8] drove the design of a new formal
specification language, with the primary objective to meet the most significant
expressiveness requirements emerged from the study3. This paper introduces
this new language, called SOLOIST (SpecificatiOn Language fOr servIce compo-
Sitions inTeractions). The language is based on a many-sorted first-order metric
temporal logic, which has been extended with new temporal modalities that sup-
port aggregate operators for events occurring in a certain time window. Expres-
siveness was not the sole requirement in designing this language. We also wanted
the language to express specifications that could lead to automatic formal ver-
ification. Indeed, we also show that SOLOIST, under certain assumptions, can

3 The language can be viewed as a profound revision of a previous attempt [3], driven
by the feedback from the field study reported in [8].
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be translated into linear temporal logic, allowing for its use with established
techniques and tools, both for design-time and for run-time verification.

The rest of this paper is structured as follows. In Sect. 2 we describe the
requirements elicitation process for the language and discuss some of the issues
faced during its design. Section 3 describes some examples of properties, associ-
ated with a BPEL process, which can be expressed with the language. Section 4
introduces SOLOIST, its syntax, and its semantics (both informally and for-
mally); it also shows the use of the language to specify the properties presented
in Sect. 3. Section 5 illustrates the translation of SOLOIST to linear temporal
logic. Section 6 discusses related work and Sect. 7 concludes the paper, providing
some hints for future research.

2 Requirements Elicitation and Design of the Language

2.1 Eliciting Language Requirements from Usage of Specification
Patterns in SBAs

In [8] some of the authors presented a study on the use of specification patterns
in SBAs. The study analyzed the requirements specifications of two sets of case
studies. One set consisted of 104 cases extracted from research papers in the
area of specification, verification and validation of SBAs published in the last
ten years; the other included 100 service interfaces developed by an industrial
partner for its service-oriented information system in the last ten years. During
the study, each requirement specification was matched against a specification
pattern; in total, we analyzed and classified 290 + 625 requirements specifications
from research and industrial data, respectively.

The study classified the requirements specifications according to four classes
of property specification patterns. Three of them correspond to the systems of
specification patterns proposed by Dwyer et al. [12], by Konrad and Cheng [23],
and by Gruhn and Laue [16]; these patterns have been widely used for the spec-
ification and verification of concurrent and real-time systems. The fourth group
includes patterns that are specific to service provisioning, and have emerged
during the study; these new patterns are:

Average response time (S1) is a variant of the bounded response pattern
defined in [23] that uses the average operator to aggregate the response time over
a certain time window.

Counting the number of events (S2) is used to express common non-
functional requirements such as reliability (e.g., “number of errors in a given
time window”) and throughput (e.g., “number of requests that a client is allowed
to submit in a given time window”).

Average number of events (S3) is a variant of the previous pattern that
states the average number of events occurred in a certain time interval within
a certain time window, as in “the average number of client requests per hour
computed over the daily business hours”.

Maximum number of events (S4) is a variant of pattern S3 that aggre-
gates events using the maximum operator.
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Absolute time (S5) indicates events that should occur at a time that sat-
isfies an absolute time constraint, as in “if the booking is done in the first week
of March, a discount is given”.

Unbounded elapsed time (S6) indicates the time elapsed since the last
occurrence of a certain event.

Data-awareness (S7) (inspired by [11, 18]) is a pattern denoting properties
that refer to the actual data content of messages exchanged between services as
in “every ID present in a message cannot appear in any future message”.

Summarizing the results of the study, we report that:

– The majority of requirements specifications stated in industrial settings re-
ferred to non-functional properties expressed using aggregate operators (e.g.,
average, count, maximum); more specifically, the combined usage of patterns
S1-S3-S4 accounted for the 81.9% of the specifications, with S3 and S4 being
the two most used patterns. Similar requirements were found only rarely
in the research literature and when so, they were expressed using the non-
aggregated versions of the patterns.

– The two most used patterns in research settings were the “response” and the
“bounded response” patterns, defined respectively in [12] and [23].

– The usage of specification patterns from the first three groups in the SBAs
research literature were similar to existing data available in literature for
other domains.

– The specification patterns proposed in the research literature were barely
used in industrial settings.

– The usage of pattern S7 was the same in both set of case studies, ranking at
the third place.

2.2 Design Choices

The results reported above have deeply influenced the design of SOLOIST. Our
main goal has been to design a formal language that is both expressive—to meet
the requirements derived from our field study [8]—and suitable for use with
automated verification techniques and tools.

Our starting point has been a temporal logic with metrics: this allows us to
support the patterns defined in [12, 23, 16], i.e., the ones prescribing constraints
on the order and/or the occurrence of events, possibly with (real-)time infor-
mation. Note that this subset is enough to express common patterns such as
“response” or “bounded response”, defined respectively in [12] and [23]. The
logic assumes a discrete time domain, with each occurrence of an event denoted
by a time-stamp.

As for supporting the service provisioning patterns, we made different deci-
sions. First, we decided not to support patterns referring to absolute or elapsed
time (patterns S5 and S6), since this would have notably impacted on the com-
plexity of the translation. Moreover, our field study [8] showed that both of them
are used in less than 1% of the specifications; given these data, we maintain this
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decision does not critically affect the expressiveness of the language as well as
its reception by practitioners.

Pattern S7 is supported by adding a first-order quantification to the logic,
following the approach proposed in [18]. By making the simplifying assumption
that domains over which the quantification ranges are finite, the first-order quan-
tification is mere syntactic sugar, which does not impact on the decidability of
the language, but helps to improve its readability. The logic is also many-sorted,
to support the different types of the messages exchanged among services.

Regarding patterns S3 and S4, which define properties related to the aggre-
gation4 of events occurred in a certain time interval h within a certain time
window K as in “the average number of service invocations per hour over the
last 11.5 hours of operation”, we run into different possibilities to represent the
observation interval h (i.e., one hour in the example) within the time window K
(i.e., 11.5 hours in the example) considered to compute the aggregate value. It
could be defined either as a fixed window over adjacent, non-overlapping inter-
vals, or as a sliding window over overlapping intervals. The latter interpretation
would require also to define a minimal distance corresponding to the shift of the
sliding window, which could be either a fixed value, such as a system tick, or a
variable value, such as the time-stamp of each event occurrence (meaning that
the window slides variably, according to the occurrences of the events). Further-
more, in both interpretations, one has to make a decision on how to deal with
time windows whose length is not an exact multiple of the observation interval;
in other words, how to consider the tail of the window whose length is less than
the one of the observation interval. After consulting with our industrial partner
and evaluating its needs, we decided to support the interpretation with adja-
cent, non-overlapping observation intervals, where tail intervals whose length
is shorter then the observation interval are ignored to express pattern S3 but
considered to express pattern S4.

Modeling pattern S2 was straightforward, while for pattern S1 we considered
its specific use in the context of SBAs. It shall be used to specify the average
response time of invocations made to a certain service over a certain time win-
dow. Since a service may provide multiple operations, we decided to include the
possibility to specify which operations to consider when computing the aggre-
gate response time, as well as the calling points within the workflow of a service
composition from which the invocations originate. Moreover, every service invo-
cation in the scope of an instance of pattern S1 is assumed to be synchronous
and actually corresponding to a pair of events, the start and end one. These
events corresponds to the start (end) of an invocation in a precise location of
the workflow; a start (end) of an invocation to the same operation of a service
but from a different location in the workflow is considered a distinct event. Under
these premises, we assume that two subsequent occurrences of the same start or
end event may not happen.

4 Note that patterns S1–S4 express aggregate statistics, without assuming any under-
lying probabilistic model.
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3 Service Compositions and their Specifications at a
Glance

We consider service compositions defined in terms of the BPEL [2] orchestration
language. Very briefly, BPEL is a high-level XML-based language for the defi-
nition and execution of business processes, defined as workflows that compose
external partner services. The definition of a workflow contains a set of vari-
ables; the business logic is expressed as a composition of activities. The main
types of activities are primitives for communicating with other services (receive,
invoke, reply, pick) and for executing assignments (assign) to variables, as well
as control-flow structures like sequence, while, switch and parallel flows. Ad-
vanced control flow structures, like event, fault, and compensation handlers are
also available. We assume that each variable defined in a BPEL process is of an
XML simple type; variables that can hold a WSDL message or an XML schema
element can be represented by flattening their multi-part structure as a sequence
of XML simple type variables.

3.1 Examples of Properties of Service Compositions Interactions

Below we list some examples of properties expressed in natural language, which
can be used to specify the interactions of a BPEL process. We assume that the
process has an integer variable foo, an invoke activity named invA that takes
and returns an integer, an invoke activity named invB with no input or output
parameters, three receive activities named recvP, recvQ, and recvR and a reply
activity term that takes no parameters. The detailed workflow structure of the
process as well as the other variables are of no interest for the purpose of this
section and are omitted for clarity. All properties are under the scope of an
implicit universal temporal quantification as in “In every process run, . . . ”.

1. “At the end of the execution of the activity invA, the value of variable foo
should be equal to 42.”

2. “The execution of activity recvP should alternate with the execution of activ-
ity recvQ, though other activities different from recvQ (respectively, recvP)
can be executed in between.”

3. “The response time of activity invB should not exceed 4 time units.”
4. “If activity invB has been invoked 4 times in the past 16 units, than activity

recvR will be executed within 32 time units.”
5. “When activity term is executed, the average response time of all the invo-

cations of activity invB completed in the past 720 time units should be less
than 3 time units.”

6. “When activity term is executed, the average number of invocations, in an
interval of 60 time units, of activity invB during the past 720 time units
should be less than 4”.

7. “When activity term is executed, the maximum number of invocations, in
an interval of 60 time units, of activity invB during the past 720 time units
should be less than 5”.
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4 SOLOIST

4.1 Preliminaries
A signature Σ is a tuple 〈S;F ;P 〉 where:
– S is a set of sort symbols, i.e., names representing various domains;
– F is a set of pairs f : s1× . . .× sn → w where n ≥ 0, f is a function symbol,
s1 × . . .× sn → w is the type of f , and s1, . . . , sn, w ∈ S;

– P is a set of pairs p : s1 × . . . × sn where n ≥ 0, p is predicate symbol,
s1 × . . .× sn is the type of p, and s1, . . . , sn ∈ S.

The sets S, F, P of Σ are denoted by Sort(Σ),Func(Σ),Pred(Σ). Notice that
constants are modeled as nullary functions of the form c :→ w.

Let Σ be a signature. For each sort s ∈ Sort(Σ), we assume a set Vs of
variables of sort s disjoint from the constants in Func(Σ). Also, for each sort
s ∈ S, we define the set of terms of sort s by induction:
– a variable x ∈ Vs of sort s is a term of type s;
– if f : s1× . . .× sn → w ∈ Func(Σ) and t1, . . . , tn are terms of type s1, . . . , sn

respectively, than f(t1, . . . , tn) is a term of type w.
An atom has the form p(t1, . . . , tn), with p(s1, . . . , sn) ∈ Pred(Σ) and terms
t1, . . . , tn of type s1, . . . , sn.

4.2 Syntax
A SOLOIST formula over Σ is defined inductively by:
– if t1, . . . , tn are terms of type s1, . . . , sn and p(s1, . . . , sn) ∈ Pred(Σ) is a

predicate symbol, then p(t1, . . . , tn) is a formula;
– if φ and ψ are formulae and x is a variable, then ¬φ, φ ∧ ψ, ∃x : φ are

formulae;
– if φ and ψ are formulae and I is a nonempty interval over N , then φUIψ

and φSIψ are formulae;
– if n,K ∈ N, ./ ∈ {<,≤,≥, >,=}, φ is a formula of the form p(t1, . . . , tn),

with p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of type s1, . . . , sn, then
CK./n(φ) is a formula;

– if n,K, h ∈ N, ./ ∈ {<,≤,≥, >,=}, φ is a formula of the form p(t1, . . . , tn),
with p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of type s1, . . . , sn, then
VK,h./n (φ) and MK,h

./n (φ) are formulae;
– if n,K ∈ N, ./ ∈ {<,≤,≥, >,=}, φ1, . . . , φm, ψ1, . . . , ψm are formulae of the

form p(t1, . . . , tn)—with p(s1, . . . , sn) ∈ Pred(Σ) and terms t1, . . . , tn of type
s1, . . . , sn—where for all i, 1 ≤ i ≤ n, φi 6= ψi, then DK./n{(φ1, ψ1), . . . , (φm, ψm)}
is a formula.

Additional temporal modalities can be defined from the UI and SI modalities
using the usual conventions. Note that the arguments of modalities C,V,M,D
can only be atoms, i.e., positive literals; this reflects the fact that they represent
the occurrences of certain events, which are then aggregated as prescribed by
the modality.
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4.3 SOLOIST at Work

In this section we show how SOLOIST can be used to specify properties related
to the interactions of a service composition described in BPEL.
Let A be the set of activities defined in a BPEL process5; A = Astart−inv ∪
Aend−inv ∪ Arecv ∪ Apick ∪ Areply ∪ Ahdlr ∪ Aother where:

– Astart−inv (Aend−inv) is the set of start (end) events of all invoke activities6;
– Arecv is the set of all receive activities;
– Apick is the set of all pick activities;
– Areply is the set of all reply activities;
– Ahdlr is the set of events associated with all kinds of handlers;
– Aother is the set of activities that are not an invoke, a receive, a pick, a reply,

or related to a handler (e.g., an assign, a control structure activity).

Let Amsg = A\Aother be the set of activities that involve a data exchange, i.e.,
that have either an input message or an output message attached with them.
Each µ ∈ Amsg has an arity corresponding to the sum of the simple type variables
by which its input and output messages can be represented; each µ ∈ Aother is
nullary.

A signature Σ to specify the interactions of a BPEL process with partner
services by means of SOLOIST can be defined as follows:

– S is the set of XML simple types (e.g., integer, character, string);
– F is the set of functions defined by the scripting language used within the

process (e.g., XPath functions on integers and strings);
– P = A. A predicate may correspond to the execution of an activity; its

arity and type are then those of the corresponding activity. The usage of the
equality predicate between terms of the same XML type is also allowed.

Following the definitions in Sect. 4, the variables of a BPEL process are parti-
tioned into various domains Vs, with s ∈ Sort(Σ).

Below we list the translations into SOLOIST of the formulae presented in
Sect. 3, each one with the corresponding item number:

1. G(∀x, y : invAend(x, y)→ foo = 42)
2. G((recvP → ¬recvPU(0,∞)recvQ) ∧ (recvQ → ¬recvQU(0,∞)recvP))
3. G(invBstart → F[0,4] invBend)
4. G(C16

=4invB → F[0,32]recvR)
5. G(termend → D720

≤3 (invBstart , invBend))
6. G(termend → V720,60

≤4 (invBstart))
7. G(termend → M720,60

≤5 (invBstart))

5 Activities of a BPEL process can be uniquely identified by means of an XPath
expression.

6 A synchronous invoke is characterized both by a start event and by an end event;
an asynchronous invoke is characterized only by a start event.
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4.4 Informal Semantics

The informal semantics of SOLOIST is based on a sequence of time-stamped
predicates. A predicate corresponds to an event, which models the execution of
an activity defined within a service composition; its arguments are the parame-
ters possibly associated with the activity, such as the input message of a service
invocation.

The SI and UI modalities have the usual meaning in temporal logics (“Until”
and “Since”)7.

The CK./n(φ) modality, evaluated in a certain time instant, states a bound
on the number of occurrences of an event φ, counted over a time window K; it
expresses pattern S2.

The VK,h./n (φ) modality, evaluated at a certain time instant τi, is used to
express a bound on the average number (with respect to an observation interval
h, open to left and closed to the right) of occurrences of an event φ, occurred
within a time window K; this corresponds to pattern S3. As discussed in Sect. 2,
since K may not be an exact multiple of h, the actual time window over which
occurrences of event φ are counted is bounded by τi − bKh ch on the left and τi
on the right; similarly, the number of observation intervals taken into account
to compute the average is bKh c. Consider, for example, the sequence of events
depicted in Fig. 1, where black circles correspond to occurrences of the φ event.
Assuming τi = 42, K = 35, and h = 6 (values expressed as time units), bKh c =
b 35

6 c = 5. The evaluation of the formula V35,6
./n (φ) at time instant 42 is then

2+1+2+4+1
5 ./ n, where the numerator of the fraction to the left of ./ is the

number of event occurrences in the window bounded by τi and τi − 5h.
The MK,h

./n (φ) modality, evaluated in a certain time instant τi, is used to
express a bound on the maximum number (with respect to an observation in-
terval h, open to left and closed to the right) of occurrences of an event φ,
occurred within a time window K; this corresponds to pattern S4. Differently
from the V modality described above, this modality takes also into account the
events occurring in a tail interval, even if its length is shorter than the one
of the observation interval h. With reference to Fig. 1 and assuming the same
values as above for τi, K, and h, the tail interval bounded by τi − K on the
7 A strict semantics is assumed for the UI and SI modalities.

�i�i � K

�i � 6h �i � 5h �i � 4h �i � 3h �i � 2h �i � h

Fig. 1. Sequence of events over a time windowK, with observation interval h (semantics
of the V and M modalities)
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left and τi − bKh ch = τi − 5h on the right is also considered for computing the
aggregate value. This leads to a final evaluation for the formula equivalent to
max({1}∪{4}∪{2}∪{1}∪{2}∪{1}) ./ n = 4 ./ n, where the i-th singleton set
in the argument of the aggregate operator corresponds to the number of event
occurrences in the i-th observation interval within the time window.

The D modality, evaluated in a certain time window τi, expresses a bound
on the average time elapsed between pairs of specific adjacent events, occurred
within a time window K; it can be used to express pattern S1. Consider, for
example, the sequence of events depicted in Fig. 2, where capital letters in the
lower part of the timeline correspond to events, and numbers in the upper part
of the timeline indicate time-stamps; assume that the current time instant is
τi = 18 and that K = 12. To express a bound for the average distance between
each occurrence of an event A and the first subsequent occurrence of an event B,
as well as for the pair of events (C,D), for the previous 12 time units, one writes a
formula like D12

./n{(A,B), (C,D)}, for some ./ and n. With respect to τi = 18, the
time window of length K = 12 includes the events (with their respective time-
stamp) (A, 7), (B, 8), (C, 10), (A, 12), (D, 14), (B, 16), (A, 17), enclosed in the
rectangle in Fig. 2. The average time distance is then computed by summing the
differences between the time-stamps of each (A,B) and (C,D) pair (each pair of
events is denoted by a different kind of arrow in Fig. 2), and dividing the result
for the number of the selected events pairs (3 in the example). Finally, the D
modality compares this result with value n, according to the relation defined by
./; i.e., the evaluation of D12

./n{(A,B), (C,D)} is (8−7)+(16−12)+(14−10)
3 ./ n. Note

that the event (A, 17) is ignored for computing the (average) distance, since it
is not matched by a corresponding B event within the selected time window.

4.5 Formal Semantics

A Σ-structure associates appropriate values to the elements of a signature Σ. A
Σ-structure D consists of:

– a non-empty set sD for each sort s ∈ Sort(Σ);

204 6 7 8 10 12 14 16 17

BA B A B C A D B A

ÇÇ Û X Û X

18
�i � K �i

Fig. 2. Sequence of pairs of events over a time window K (semantics of the D modality)
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– a function fD : sD1 ×. . .×sDn → wD for each function symbol f : s1×. . .×sn →
w ∈ Func(Σ);

– a relation pD ⊆ sD1 × . . . × sDn for each predicate symbol p : s1 × . . . × sn ∈
Pred(Σ);

A temporal first-order structure over Σ is a pair (D̄, τ̄), where D̄ = D0,D1, . . .
is a sequence of Σ-structures and τ̄ = τ0, τ1, . . . is a sequence of natural numbers
(i.e., time-stamps), where:

– the sequence τ̄ is monotonically increasing (i.e., τi < τi+1, for all i ≥ 0);
– for each Di in D̄, with i ≥ 0, for each s ∈ Sort(Σ), sDi = sDi+1 ;
– for each Di in D̄, with i ≥ 0, for each function symbol f ∈ Func(Σ), fDi =
fDi+1 .

A variable assignment σ is a Sort(Σ)-indexed family of functions σs : Vs → sD

that maps every variable x ∈ Vs of sort s to an element σs(x) ∈ sD. Notation
σ[x/d] denotes the variable assignment that maps x to d and maps all other
variables as σ does.

The valuation function JtKDσ of term t for a Σ-structure D is defined induc-
tively as follows:

– if t is a variable x ∈ Vs, then JtKDσ = σs(x) ;
– if t is a term f(t1, . . . , tn) then JtKDσ = fD(Jt1KDσ , . . . , JtnKDσ ).

For the sake of readability, we drop the superscript D and the subscript σ from
the valuation function J·K when they are clear from the context.

Given a temporal structure (D̄, τ̄) over Σ, a variable assignment σ, sym-
bols i, n,K, h ∈ N, ./ ∈ {<,≤,≥, >,=}, we define the satisfiability relation
(D̄, τ̄ , σ, i) |= φ for SOLOIST formulae as depicted in Fig. 3.

5 Translation to Linear Temporal Logic

In this section we show how SOLOIST can be translated into linear temporal
logic. This translation guarantees the decidability of SOLOIST based on well-
known results in temporal logic, allowing for its use with established verification
techniques and tools. The translation presented here has not been designed to
guarantee efficiency in verification but rather to be comprehensible.

SOLOIST is translated into a variant of linear temporal logic called MPLTL
(Metric Linear Temporal Logic with Past) [31], which is a syntactically-sugared
version of classical PLTL [21], defined over a mono-infinite discrete model of
time represented by ω-words. For simplicity, we assume that the logic underlying
SOLOIST is single-sorted; no expressiveness is lost, since it is well-known that
many-sorted first-order logic (on which SOLOIST is based) can be reduced to
single-sorted first-order logic when the number of sorts is finite. Moreover, since
we assume that the domains corresponding to sorts are finite, we can drop the
first-order quantification and convert each quantifier into a conjunction or a
disjunction of atomic propositions. Similarly, n-ary predicate symbols (with n ≥
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(D̄, τ̄ , σ, i) |= p(t1, . . . , tn) iff (Jt1K, . . . , JtnK) ∈ pDi

(D̄, τ̄ , σ, i) |= ¬φ iff (D̄, τ̄ , σ, i) 6|= φ

(D̄, τ̄ , σ, i) |= φ ∧ ψ iff (D̄, τ̄ , σ, i) |= φ ∧ (D̄, τ̄ , σ, i) |= ψ

(D̄, τ̄ , σ, i) |= ∃x : φ iff (D̄, τ̄ , σ[x/d], i) |= φ
for some d ∈ sD(with x of sort s)

(D̄, τ̄ , σ, i) |= φSIψ iff for some j < i, τi − τj ∈ I, (D̄, τ̄ , σ, j) |= ψ
and for all k, j < k < i, (D̄, τ̄ , σ, k) |= φ

(D̄, τ̄ , σ, i) |= φUIψ iff for some j > i, τj − τi ∈ I, (D̄, τ̄ , σ, j) |= ψ
and for all k, i < k < j, (D̄, τ̄ , σ, k) |= φ

(D̄, τ̄ , σ, i) |= CK./n(φ) iff c(τi −K, τi, φ) ./ n and τi ≥ K

(D̄, τ̄ , σ, i) |= VK,h./n (φ) iff
c(τi − bKh ch, τi, φ)

bK
h
c

./ n and τi ≥ K

(D̄, τ̄ , σ, i) |= MK,h
./n (φ) iff max

{⋃bK
h c

m=0 {c(lb(m), rb(m), φ)}
}
./ n

given lb(m) = max{τi −K, τi − (m+ 1)h}
and rb(m) = τi −mh, with τi ≥ K

(D̄, τ̄ , σ, i) |= DK./n{(φ1, ψ1), . . . , (φm, ψm)} iff

∑m

j=1

∑
(s,t)∈d(φj ,ψj ,τi,K)(τt − τs)∑m

j=1 |d(φj , ψj , τi,K)|
./ n

with τi ≥ K
where c(τa, τb, φ) = |

{
s | τa < τs ≤ τb and (D̄, τ̄ , σ, s) |= φ

}
|,

and d(φ, ψ, τi,K) ={
(s, t) | τi −K < τs ≤ τi and (D̄, τ̄ , σ, s) |= φ, t = min{u | τs < τu ≤ τi, (D̄, τ̄ , σ, u) |= ψ}

}
.

Fig. 3. Formal semantics of SOLOIST

1) are converted into atomic propositions. For example, a formula of the form
∃x : P (x), with x ranging over the finite domain {1, 2, 3}, is translated into the
formula

∨
x∈{1,2,3} Px, where P1, P2, P3 are atomic propositions. We denote with

Π the finite set of atomic propositions used in formulae obtained as described
above.

These simplifications allow us to replace the temporal first-order structure
(D̄, τ̄) and the variable assignment σ used in the definition of the satisfiability
relation of SOLOIST with timed ω-words, i.e., ω-words over 2Π×N. For a timed
ω-word z = z0, z1, . . . , every element zk = (σk, δk) contains the set σk of atomic
propositions that are true at the natural time-stamp denoted by τk =

∑k
i=0 δi

(with δi > 0 for all i > 0). The satisfiability relation for SOLOIST can then
be defined over timed ω-words, and it is denoted by z, i

τ
|= φ, with z being a

timed ω-word and i ∈ N; we omit its definition since it can be derived with
straightforward transformations from the one illustrated in Fig. 3.

Furthermore, we introduce a normal form where negations may only oc-
cur on atoms (see, for example, [31]). First, we extend the syntax of the lan-
guage by introducing a dual version for each operator in the original syntax,
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except for the CK./n,V
K,h
./n ,MK,h

./n ,DK./n modalities8: the dual of ∧ is ∨; the dual
of UI is “Release” RI : φRIψ ≡ ¬(¬φUI¬ψ); the dual of SI is “Trigger” TI :
φTIψ ≡ ¬(¬φSI¬ψ). For the sake of brevity, we do not explicitly report the
semantics of these dual operators; it can be derived straightforwardly from
the above definitions. A formula is in positive normal form if its alphabet is
{∧,∨,UI ,RI ,SI ,TI ,CK./n,V

K,h
./n ,MK,h

./n ,DK./n} ∪Π ∪ Π̄, where Π̄ is the set of for-
mulae of the form ¬p for p ∈ Π. For the rest of this section, we assume that
SOLOIST formulae have been transformed into equivalent formulae in positive
normal form.

Under these assumptions, the translation of SOLOIST to MPLTL boils down
to expressing the temporal modalities RI ,TI ,UI ,SI ,CK./n,V

K,h
./n ,MK,h

./n ,DK./n in
MPLTL, preserving their semantics.

First of all, we should remark that while in the semantics of SOLOIST the
temporal information is denoted by a natural time-stamp, in MPLTL the tem-
poral information is implicitly defined by the integer position in an ω-word.
However, the model based on timed ω-words and the one based on ω-words can
be transformed into each other. Given an ω-word w such that w, i |= φ (where
w, i |= φ denotes the satisfiability relation over ω-words), it is possible to define
a timed ω-word z = z0, z1, . . . , with z0 = (w0, 0) and zk = (wk, 1) for k > 0,
such that z, i

τ
|= φ. Conversely, given a SOLOIST timed ω-word z, we need to

pinpoint in an MPLTL ω-word w the positions that correspond to time-stamps
in the z timed ω-word where an event occurred. We add to the set Π a special
propositional symbol e, which is true in each position corresponding to a “valid”
time-stamp in the z timed ω-word. In the MPLTL semantics, an ω-word w over
Π ∪ {e} is defined as follows: wk = σk ∪ {e} whenever τk is defined, and wk = ∅
otherwise. We then define a mapping ρ from SOLOIST dual normal form formu-
lae into MPLTL formulae, such that we can state that z, i

τ
|= φ iff w, τi |= ρ(φ).

The mapping ρ is defined by induction as follows:
1. ρ(p(t1, . . . , tn)) = p(t1, . . . , tn).
2. ρ(¬p(t1, . . . , tn)) = ¬p(t1, . . . , tn).
3. If φ and ψ are formulae and x is a variable, then

ρ(φ ∧ ψ) = ρ(φ) ∧ ρ(ψ);
ρ(φ ∨ ψ) = ρ(φ) ∨ ρ(ψ);
ρ(∃x : φ) = ∃x : ρ(φ);
ρ(∀x : φ) = ∀x : ρ(φ).

4. If φ and ψ are formulae and I is a nonempty interval over N, then

ρ(φUIψ) = (¬e ∨ ρ(φ))UI(e ∧ ρ(ψ));
ρ(φSIψ) = (¬e ∨ ρ(φ))SI(e ∧ ρ(ψ));
ρ(φRIψ) = (e ∧ ρ(φ))RI(¬e ∨ ρ(ψ));
ρ(φTIψ) = (e ∧ ρ(φ))TI(¬e ∨ ρ(ψ)).

8 A negation in front of one of the CK./n,VK,h./n ,MK,h
./n ,DK./n modalities becomes a nega-

tion of the relation denoted by the ./ symbol, hence no dual version is needed for
them.
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5. For CK./n, we consider only the case CK>n, since the other possible relations
used for ./ can be modeled with the following equivalences: CK≤n ≡ ¬CK>n; CK≥n ≡
CK>n−1; CK<n ≡ ¬CK>n−1; CK=n ≡ CK>n−1 ∧ ¬CK>n.

ρ(CK>n(φ)) =
∨

0≤i1<...<in+1<K

(
Yi1(e ∧ φ) ∧ . . . ∧ Yin+1(e ∧ φ)

)
where the MPLTL modality Y (“yesterday”) is the past version of “next” and
refers to the previous time instant. Intuitively, the above MPLTL formula states
that in the previous K time instants there have been at least n+ 1 occurrences
of the event corresponding to (e ∧ φ); such a situation satisfies the constraint
associated with the original formula defined in SOLOIST.

6. The mapping for the VK,h./n modality is defined in terms of the C modality:

ρ(VK,h./n φ) = ρ(Cb
K
h c·h

./n·bK
h c
φ)

7. For the modality MK,h
./n , we include only the two cases MK,h

<n and MK,h
>n , as

the others can be derived by properly combining instances of these two:

ρ(MK,h
<n φ) =

bK
h c−1∧
m=0

Ym·h
(
ρ
(
Ch<nφ

))∧(
YbK

h c·h
(
ρ
(

C(K mod h)
<n φ

)))

ρ(MK,h
>n φ) =

bK
h c−1∨
m=0

Ym·h
(
ρ
(
Ch>nφ

))∨(
YbK

h c·h
(
ρ
(

C(K mod h)
>n φ

)))
The formulae above decompose the computation of the maximum number of
occurrences of the event (e∧φ) by suitably combining constraints on the number
of occurrences of the event in each observation interval within the time window.

8. For the DK./n modality, ρ(DK./n(φ, ψ)) is defined9 as follows:

∨
0<h≤bK

2 c


∨

0≤i1<j1<...ih<jh<K
and(∑h

m=1
jm−im

h

)
./n



Yi1(e ∧ φ) ∧ Yj1(e ∧ ψ)∧
. . .

∧Yih(e ∧ φ) ∧ Yjh(e ∧ ψ)∧

¬

∨ 0≤s<t<K
s6∈{i1,...,ih}
t 6∈{j1,...,jh}

(
Ys(e ∧ φ) ∧ Yt(e ∧ ψ)

)




The above formula considers all possible h occurrences (with h up to bK2 c, as
indicated in the outer “or”) of pairs of events corresponding to (e∧φ) and (e∧ψ).
The inner “or” considers a sequence of h pairs of time instants (i1, j1), . . . (ih, jh),
constrained by the bound represented by ./ n. The top, right-hand part of the
9 For the sake of simplicity, we consider the case of only one pair of events (φ, ψ), but
the formula can be generalized to the case of multiple pairs (φi, ψi).
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formula imposes that every pair of time instants actually corresponds to the
occurrence of a pair of events; the bottom, right-hand part excludes the case
that some pairs of events may occur at time instants which are not in the above
sequence.

The complexity of a formula resulting from the translation may be exponen-
tial in the size of the constants occurring in the aggregate operators. Without
aggregate operators, the translation is linear in the size of the original formula.
The only relevant cases for aggregate operators are CK>n and DK./n, since the
other modalities can easily be defined in terms of these two. The mapping for
CK>nφ considers all subsets of n + 1 integers of the set {0, . . . ,K − 1}. Hence,
it may require an MPLTL formula of size proportional to (n + 1)

(
K
n+1
)
, which

in the worst case, corresponding to n + 1 = K
2 , is O(K · 2K). The mapping of

DK./n(φ, ψ) essentially requires, in the worst case, to select all possible subsets of
set {0, . . . ,K − 1}, i.e., 2K subsets. Hence, again this may require an MPLTL
formula of size O(K · 2K). As remarked at the beginning of this section, the
translation presented above has been designed to show the possibility of reduc-
ing SOLOIST to a linear temporal logic; nevertheless, future work will address
efficiency in the verification of SOLOIST formulae.

6 Related Work

While performing the field study described in [8], we noticed that the three
main formal languages used by researchers in the field of SBAs to specify and
verify properties related to service interactions are LTL (Linear Temporal Logic),
CTL (Computational Tree Logic), and Event Calculus [24]. While the first two
are mainly used to describe untimed temporal relations between events, Event
Calculus has been the basis to develop more expressive languages, such as EC-
Assertion [27], which can express service guarantees terms such as those captured
by patterns S1 and S2. However, it requires to introduce additional constructs in
a formula, such as explicit variables to track response time or event counters, as
well additional support formulae, like the ones used to maintain a list of variables
which are used to compute an aggregate value.

In [8] we also noticed a recurring presence of extensions of temporal logics
with support for first-order quantification, namely LTL-FO, CTL-FO [11], LTL-
FO+ [17], and CTL-FO+ [18], which enrich the underlying logic to express
data-aware properties, captured by pattern S7.

In the realm of SBAs there have also been several proposals of languages for
specifying service level agreements, mainly targeting quality-of-service (QoS)
attributes such as response time and throughput; among them, we mention
WSLA [22] and a timeliness-related extension of WS-Agreement [28]. These lan-
guages usually do not have any formal or mathematical grounding, but in most
cases they define an XML schema containing the definition of the main QoS
attributes and their data types. One exception is SLAng, which—besides being
defined on the top of standard modeling languages like EMOF and OCL, to guar-
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antee precision and understandability—has been mapped to timed automata, to
enable efficient run-time monitoring [34].

The fragment of SOLOIST corresponding to many-sorted metric first-order
temporal logic is very similar to the work defined in [6], where a similar frag-
ment is used to define system policies, which are then monitored; however, this
fragment, without the other temporal operators introduced in SOLOIST, would
have been inadeguate to express the service provisioning patterns.

In the field of (temporal) logics, there have been several proposals to express
properties related or similar to the one captured by the service provisioning pat-
terns identified in [8]. For example, references [26] and [25] propose, respectively,
Counting CTL and Counting LTL, which extend the temporal modalities of the
underlying (non-metric) logic with the ability to constrain the number of states
satisfying certain sub-formulae along paths. In [7], a first-order policy specifica-
tion language is introduced; the language, based on past time linear temporal
logic with first-order quantifier, includes also a counting quantifier, used to ex-
press that a policy depends on the number of times another policy was satisfied
in the past. Rabinovich [33] presents TLC, the metric temporal logic with count-
ing modalities over continuous time, where a counting modality Ck(X) states
that X is true at least at k points in the unit interval ahead.

Aggregate operators have been studied in the context of mathematical logic,
for database query languages [19] and logic programming [30]. More recently,
they have also been considered in temporal logics, to express quantitative atomic
assertions related to accumulative values of variables along a computation [9].
de Alfaro [1] introduces an operator to express bounds on the average time be-
tween events (conceptually similar to the D operator of SOLOIST) in the context
of probabilistic temporal logic, to specify and verify performance and reliabil-
ity properties of discrete-time probabilistic systems. Extensions of specification
formalism with statistical operators have also been proposed in the context of
run-time verification. In [13], LTL is extended with operators that evaluate ag-
gregate statistics over an execution trace. Reference [14] presents the Larva
verification tool, based on Dynamic Automata with Timers and Events, which is
able to evaluate statistical measures over dynamic intervals, like the ones iden-
tified with the C,V,M,D modalities of SOLOIST; however, the report does not
provide enough details on the language used to specify the properties to monitor.

7 Conclusion and Future Work

Service-based applications demand rethinking the way software is designed, spec-
ified and verified. In this paper we focus on the specification aspect and, in
particular, we propose a new language, called SOLOIST, that can be used to
specify properties of service compositions interactions. The language has been
designed from scratch, after capturing and reasoning on the most common prop-
erty specification patterns used by practitioners in the field of SBAs. Based on a
many-sorted first-order metric temporal logic, SOLOIST includes new temporal
modalities that have been tailored to express properties that refer to aggregate
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operations for events occurring in a certain time window. We also show how
SOLOIST can be translated into linear temporal logic, allowing for its use with
established techniques and tools for both design-time and run-time verification.

Indeed, our next steps with SOLOIST will focus on its efficient verification
based on the Zot toolkit [32], developed10 within our group, by defining an
efficient SMT-based encoding of the language. Although Zot has been used so
far for design-time verification, we also want to experiment to embed it and
its SOLOIST plug-in within a Web service monitoring architecture (such as
Dynamo [15]), to enable support also for run-time verification.
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