A Model-Driven Approach to Trace Checking of Pattern-based Temporal Properties

Wei Dou
SnT - University of Luxembourg
Luxembourg, Luxembourg
dou@svv.lu

Domenico Bianculli
SnT - University of Luxembourg
Luxembourg, Luxembourg
domenico.bianculli@uni.lu

Lionel Briand
SnT - University of Luxembourg
Luxembourg, Luxembourg
lionel.briand@uni.lu

Abstract—Trace checking is a procedure for evaluating requirements over a log of events produced by a system. This paper deals with the problem of performing trace checking of temporal properties expressed in TemPsy, a pattern-based specification language. The goal of the paper is to present a scalable and practical solution for trace checking, which can be used in contexts where relying on model-driven engineering standards and tools for property checking is a fundamental prerequisite.

The main contributions of the paper are: a model-driven trace checking procedure, which relies on the efficient mapping of temporal requirements written in TemPsy into OCL constraints on a meta-model of execution traces; the implementation of this trace checking procedure in the TEMPSY-CHECK tool; the evaluation of the scalability of TEMPSY-CHECK, applied to the verification of real properties derived from a case study of our industrial partner, including a comparison with a state-of-the-art alternative technology based on temporal logic. The results of the evaluation show the feasibility of applying our model-driven approach for trace checking in realistic settings: TEMPSY-CHECK scales linearly with respect to the length of the input trace and can analyze traces with one million events in about two seconds.

I. INTRODUCTION

Trace checking, also called trace validation [1] or history checking [2], is a technique for evaluating requirements over a log of recorded events produced by a system. This technique complements verification activities performed before the deployment of a system (e.g., testing and model checking) or during the system’s execution (e.g., run-time monitoring).

As part of a larger research collaborative project that we are running with our public service partner CTIE (Centre des technologies de l’information de l’Etat, the Luxembourg national center for information technology), on model-driven run-time verification of business processes [3], we are investigating the use of trace checking for detecting anomalous behaviors of eGovernment business processes and for checking whether third-parties (e.g., other administrations, suppliers) involved in the execution of the process fulfill their guarantees.

The effective application of trace checking goes through two steps: 1) precisely specifying the requirements to check over a trace; 2) defining a procedure for checking the conformance of a trace with respect to the requirements.

Regarding the specification of the requirements to check, many of the existing approaches support some types of temporal properties, usually expressed in some temporal logic, either the classic LTL or CTL, or more complex versions like MFOTL [4] and SOLOIST [5]. However, these specification approaches require strong theoretical and mathematical background, which are rarely found among practitioners. To address this issue, in previous work [6] we proposed OCLR, a domain-specific language for the specification of temporal properties, based on the catalogue of property specification patterns defined by Dwyer et al. [7], and extended with additional constructs. The language has been defined in collaboration with the CTIE analysts, based on the analysis of the requirements specifications of an industrial case study. The most recent version of the language, now called TemPsy (Temporal Properties made easy) [8], sports a syntax close to natural language, has all the constructs required to express the property specification patterns found in our case study, and has a precise semantics expressed in terms of linear temporal traces. By design, TemPsy does not aim at being as expressive as a full-fledged temporal logic. Instead, its goal is to make as easy as possible the specification of the temporal requirements of business processes, by supporting only the constructs needed in business process applications.

Having fixed the specification language for the properties to check, in this paper we focus on the definition of a trace checking procedure for temporal properties. The definition of this procedure has to fulfill the following requirements determined by the type of context in which this work is set: R1) to be viable in the long term, any procedure shall rely on standard MDE (model-driven engineering) technology — in our context tools implementing OMG specifications — for checking the compliance of a system to its application requirements; R2) any procedure shall be scalable and enable checking of large traces within practical time limits, such that a trace with millions of events could be checked within seconds.

Requirement R1 emerges from the software development methodology embraced by our industrial partner, which has adopted MDE in practice and requires any software solution added to the development process (e.g., trace checking) to adhere to OMG specifications and rely on the corresponding tools. We remark that this requirement prevents the adoption of a naive approach for trace checking, in which TemPsy specifications would be first translated (likely manually, given the complexity of the task) into their corresponding temporal logic formulae and then verified using an existing trace...
checking approach (e.g., [4], [9]) optimized for temporal logic but not based on standard MDE technologies. Although this requirement is motivated by specific needs from our partner, we believe — based on experience — that it can be generalized to other contexts in which solutions have to be engineered by using standard MDE technologies that are already in place in the targeted development environment.

As for requirement R2, the trace checking procedure has to: 1) scale with respect to the length of the trace, because traces may contain a huge number of events, depending on the time span captured by the log, the nature of the system to which the log refers to (e.g., several virtual machines), and the types of events monitored (e.g., high-level message passing events or low-level method calls) [10]; 2) complete within practical time limits, because trace checking can be used not only for post-mortem analysis, but also to enable real-time log analysis (as a complementary strategy to run-time monitoring), to promptly detect critical requirements violations.

Keeping in mind the above requirements, the goal of this paper is to present a scalable and practical solution, based on standard MDE technologies, for trace checking of pattern-based temporal properties expressed in TemPsy. To achieve this goal, the paper will make the following contributions: i) a model-driven trace checking procedure, which relies on a mapping of temporal requirements written in TemPsy into Object Constraint Language (OCL) constraints on a meta-model of execution traces; ii) a publicly available tool (TemPsy-HECK) implementing this model-driven trace checking procedure; iii) an evaluation of the scalability of TemPsy-HECK, applied to the verification of real properties derived from a case study of our public service partner, including a comparison with a state-of-the-art alternative technology. As a separate contribution, we also make available the artifacts used in the evaluation to contribute to the building of a public repository of case studies for evaluating trace checking/run-time verification procedures.

Our trace checking procedure fulfills requirement R1 above since it follows a model-driven approach based on OCL. OCL is the de-facto constraints specification language defined by OMG and an international standard [11], which is supported by mature constraint checking technology, such as the constraint checker included in Eclipse OCL [12]. The procedure relies on a generic meta-model of system execution traces and leverages an optimized mapping of TemPsy properties into OCL constraints defined over this trace model. This mapping is optimized based on the structure of the TemPsy property to check, in order to achieve better performance. More specifically, we show how the problem of checking a TemPsy property over an execution trace (i.e., the TemPsy trace checking problem) can be reduced to evaluating an OCL constraint (derived from the TemPsy property to check and semantically-equivalent to it) on an instance of the trace model; this check is executed using standard OCL checkers.

To show the fulfillment of requirement R2 above, we extensively evaluated the scalability of the proposed trace checking procedure, by assessing the relationship among the checking time, the structural properties of a trace (e.g., length, distribution of events), and the type of property to check. We evaluated the scalability of our TemPsy-HECK tool on real properties extracted from our case study, on traces with length ranging from 100K to 1M. We also compared the performance of TemPsy-HECK with MonPoly [13], a state-of-the-art alternative technology, selected from the participants to the “offline monitoring” track of the international Competition on Software for Runtime Verification [14], [15]. The experimental results show that TemPsy-HECK can load and analyze very large traces (with one million events) in about two seconds and that it scales linearly with respect to the length of the trace to check. The results also show that TemPsy-HECK in practice performs similarly to or better than the state-of-the-art, depending on the type of properties, confirming the feasibility and benefits of a model-driven approach for trace checking of temporal properties.

The rest of the paper is structured as follows. Section II provides some background concepts of TemPsy. Section III describes our model-driven approach for trace checking of TemPsy properties. Section IV reports on the evaluation conducted with TemPsy-HECK. Section V discusses related work. Section VI concludes the paper, providing directions for future work.

II. BACKGROUND: THE TemPsy LANGUAGE

Property specification patterns (PSPs) have been initially proposed by Dwyer et al. [7] in the late ’90s in the context of formal verification, as a means to express recurring properties in a generalized form, which could be formalized in different specification languages. PSPs consists of eight parametrizable patterns ("absence", "universality", "existence", "bounded existence", "precedence", "response", "precedence chain", "response chain"), representing high-level abstractions of formal specifications, and five scopes ("globally", "before", "after", "between-and", "after-until"), which indicate the portions of a system execution in which a certain pattern should hold.

In previous work we proposed OCLR [6], a pattern-based, domain-specific language for the specification of temporal properties; the most recent version of the language is now called TemPsy (Temporal Properties made easy) [8]. The design of (OCLR and) TemPsy was driven by the analysis of the requirements of various applications implementing business process models in the context of eGovernment systems. The analysis showed that all the requirements could be expressed through Dwyer’s PSPs, with some additional constructs. Hence, TemPsy was designed with the goal of supporting Dwyer’s PSPs with the following extensions: 1) the possibility, in the definition of a scope boundary, to refer to a specific occurrence of an event; 2) the possibility to indicate a time distance with respect to a scope boundary; 3) support for expressing time distance between occurrences in the precedence and response patterns as well as their chain versions; 4) additional variants for the bounded existence and absence patterns.
The main concepts within a property expressed in TemPsy are those of scope and pattern. Scopes and patterns refer to events, which correspond to the actual events logged in the execution trace on which the properties specified in TemPsy are meant to be checked. TemPsy properties may contain time distances (both between events and from scope boundaries); time distances are expressed with an integer value, followed by the ‘tu’ keyword, which represents the system time unit (as suggested in [16]). For space reasons, we only explain TemPsy informally, focusing on the supported patterns; readers are referred to the online report [8] for the complete definition of the (formal) syntax and semantics.

The semantics of patterns in TemPsy is defined as follows:

Universality. An event should occur across the entire execution trace.

Existence. The existence pattern can be expressed in four variants, using the following syntax: “eventually [at least l at most l exactly m] A”, where the brackets indicate an optional part and the vertical bar represents an alternative. The basic variant indicates that event A will eventually happen at least once; the other three variants are used to express a bounded existence pattern, which indicates that event A will eventually happen at least/at most/exactly m times.

Absence. In addition to stating that a certain event never occurs in the given scope, TemPsy makes also possible to specify that a specific number of occurrences of the same event should not happen, as in “never exactly 2 A”, which indicates that A should never occur exactly twice.

Precedence. This pattern indicates the precondition relationship between a pair of events (respectively, the two blocks of a chain) in which the occurrence of the second event (respectively, block) depends on the occurrence of the first event (respectively, block). Based on this definition, we add support for timing information to enable expressing the time distance between two adjacent events. For example, the pattern “A preceding at most 5 tu B, #at least 2 tu C” indicates that the event A is the precondition of the block “B followed by C”. In this pattern, A (left-hand side of ‘preceding’) represents the first block, while the expression “B, #at least 2 tu C” represents the second block, and the time distance between A and B should be at most 5 time units (specified right after ‘preceding’), and the time distance between B and C (denoted with a # symbol) should be at least 2 time units.

Response. This pattern specifies the cause-effect relationship between a pair of events (respectively, the two blocks of a chain) in which the occurrence of the first event (respectively, first block) leads to the occurrence of the second event (respectively, second block). Similarly to precedence, we add support for timing information to enable expressing the time distance between two adjacent events.

To exemplify, the property “Event B shall happen at least 4 time units before the third occurrence of event Y.” is expressed in TemPsy as “before 3 Y at least 4 tu eventually B.”

![Fig. 1. Meta-model for execution traces](image_url)
B. Overview of the approach

Our approach for model-driven trace checking is sketched in Fig. 2: parallelogram shapes correspond to input/output artifacts, while rectangles correspond to steps in the approach. The two inputs are represented by a log, corresponding to the trace one wants to check, and by a set of TemPsy properties. The log file is read and converted (step 1a) to an instance of TemPsy. The two inputs are represented by a log, corresponding to the in Fig. 2: parallelogram shapes correspond to input/output properties.

The key step (#2 in the figure) of our approach is to evaluate an OCL invariant on the trace instance. The checking of this invariant, which can be done using standard OCL checking tools, is semantically equivalent to performing trace checking of the TemPsy properties provided in input.

We have defined this invariant on the Trace class, as shown in Fig. 3. For every TemPsy property provided in input (and referenced in the instance of the trace through the attribute self.properties, line 2), the invariant evaluates a boolean expression, which conceptually corresponds to applying the semantics of the pattern used in the property (accessed through the expression property.pattern) on a set of sub-traces, as defined by the scope used in the property (accessed through the expression property.scope).

More specifically, the body of the invariant expression is a multi-way branch (defined through a sequence of if statements), which selects a certain branch based on the specific scope type used within the property. Within the body of a branch, first a function of the form applyScope*S* is called. This function takes the scope used in the property as input and returns a collection of sub-traces, as defined by the scope semantics. Afterwards, the invariant invokes a function of the form checkPattern*P*, which checks whether the pattern used in the property holds on each sub-trace.

For instance, let us assume that the type of the scope of the TemPsy property provided in input is globally and that the type of the pattern used in the property is response. As shown in line 5, the function applyScopeGlobally is invoked to compute the sub-trace(s) defined by the scope parameter; the return value of this function is assigned to variable subtraces. The branch indicated on line 15 is then taken, which results in the evaluation of the boolean function checkPatternResponse on all the elements of subtraces, to check whether the input parameter pattern holds on each sub-trace.

C. Example of OCL functions for scopes (before)

To exemplify the OCL functions that are used to apply a scope definition on a trace, we illustrate the function applyScopeBefore, corresponding to the before scope. This function takes as input an object representing a scope in TemPsy and yields one or more segments of the trace, as determined by the semantics of the scope.

The complete definitions in OCL of the functions of the form applyScope*S* and checkPattern*P* are available in the technical report accompanying this paper [8]. We illustrate examples of the applyScope*S* and checkPattern*P* functions in subsections III-C and III-D, respectively; to ease readability and conciseness, all the code snippets presented in these subsections are written using pseudocode.

context Trace
inv: self.properties->forAll(property: TemPsy::
TemPsyExpression |

let scope: TemPsy::Scope = property.scope, pattern: TemPsy::Pattern = property.pattern in
if scope.type = TemPsy::GLOBALLY then
let subtraces: Sequence(OrderedSet(TraceElement)) = applyScopeGlobally(scope) in
if pattern.type = TemPsy::UNIVERSALITY then
subtraces->forAll(subtrace | checkPatternUniversality(subtrace, pattern))
else if pattern.type = TemPsy::EXISTENCE then
subtraces->forAll(subtrace | checkPatternExistence(subtrace, pattern))
else if pattern.type = TemPsy::ABSENCE then
subtraces->forAll(subtrace | checkPatternAbsence(subtrace, pattern))
else if pattern.type = TemPsy::PRECEDENCE then
subtraces->forAll(subtrace | checkPatternPrecedence(subtrace, pattern))
else if pattern.type = TemPsy::RESPONSE then
subtraces->forAll(subtrace | checkPatternResponse(subtrace, pattern))
endif endif endif endif endif

endif endif endif endif endif

Fig. 3. OCL invariant for checking TemPsy properties on a trace

The pseudocode of the function applyScopeBefore is shown in Algorithm 1. The input parameter scope is an instance of the before scope, and the output is a list that contains the trace segments as determined by the structure of scope. We assume the parameter scope to have the form “before [m] X [op n tu]” (see section II), in which op stands for the comparison operator (i.e., “at least”, “at most”, or “exactly”) used in the constraint that defines the time distance from the scope boundary event X.

The function starts by reading the parameters X, m, op, and n from the instance of the before scope (lines 1–4). In addition, we define and initialize to an empty list both variable result (to store the output value) and the auxiliary variable segment.
Algorithm 1: applyScopeBefore

Input: scope : an instance of the before scope structured as "before [m] X [op n tu]"

Output: result : a list containing the trace segment as determined by the parameters of scope

1 $X \leftarrow$ event name of the scope boundary
2 $m \leftarrow$ index of the specific occurrence of event X
3 $op \leftarrow$ comparison operator of the constraint on time distance
4 $n \leftarrow$ time distance from the m-th occurrence of X
5 $result \leftarrow \emptyset$
6 if $m = \text{null}$ then $m \leftarrow 1$
7 $t \leftarrow$ timestamp of the m-th occurrence of event X
8 if $t \neq \text{null}$ then
9 switch op do
10 case "at least" do
11 segment \leftarrow trace elements with timestamp t'
12 satisfying $t' \leq t - n$
13 case "at most" do
14 segment \leftarrow trace elements with timestamp t'
15 satisfying $t - n \leq t' < t$
16 case "exactly" do
17 segment \leftarrow trace elements with timestamp t'
18 satisfying $t' < t$
19 otherwise do
20 segment \leftarrow trace elements with timestamp t'
21 satisfying $t' < t$
22 return $\text{append}(segment)$
23 return $result$

(for collecting intermediate trace elements). If the parameter m is omitted in the scope definition, variable m is replaced with the value 1 (line 6), according to the default semantics of the before scope. We then assign to variable t the timestamp of the m-th occurrence of event X in the trace (line 7). If t is defined, it means that the m-th occurrence of the event has been found in the trace. Lines 9–17 select a segment from the trace, based on the value of op. For example, when op is "at least", line 11 selects all the trace elements that occur at least n time unit(s) before the m-th occurrence of event X. If no time distance constraint is specified in the scope (line 17), the function selects the trace segment starting at the beginning of the trace and ending at the m-th occurrence of event X. The function ends by adding the segment selected from the trace to the output variable result.

D. Example of OCL functions for patterns (precedence)

To exemplify the OCL functions that are used to check if a pattern holds on a sub-trace, we present the function checkPatternPrecedence, corresponding to the precedence pattern. This function takes as input a sub-trace and an object representing a pattern in TemPsy, and returns whether the pattern holds on the input sub-trace. The definition of function checkPatternPrecedence comes in four variants, to consider the case where no time distance is specified between the two blocks of the patterns, and the three cases with the different comparison operators (i.e., "at least", "at most", and "exactly"). For space reasons, we only describe the function checkPatternPrecedenceAtLeast, shown in Algorithm 2.

This function takes as input a trace segment and the parameters of an instance of a precedence pattern: block1, block2, and the optional time distance n between them. Notice that block1 and block2 can be either an atomic event or a chain of events with optional constraints on the time distances in between. The semantics of the pattern prescribes that each occurrence of block2 is preceded, possibly with a certain time distance, by an occurrence of block1. In practice, we need to check whether there is an occurrence of block1 before the first occurrence of block2 (and at a certain time distance, if required), since this implies that any other occurrence of block2 occurring after the first one is preceded by an occurrence of block1. We report a violation if we cannot find an occurrence of block1 before the first occurrence of block2 or if the distance between the two blocks is less than n.

The algorithm uses several auxiliary variables: $size_1$ and $size_2$ keep track of the number of events to match in each block; firstOfBlock1 and firstOfBlock2 contain the event of each block’s first element. The integer tuple (i_1, pt_1) (respectively (i_2, pt_2)) is used to determine whether the trace element being checked is a match of the next event in block1 (respectively, block2). More specifically, element i_1 (respectively, i_2) stores the position within block1 (respectively, block2) of the next event to be matched; element pt_1 (respectively, pt_2) stores the timestamp of the previous trace element matched at block1[i_1-1] (respectively, block2[i_2-1]). The boolean $flag_1$ is initialized to true and is set to false when the first occurrence of block1 has been fully matched.
The function contains a loop that iterates through all the elements of the input subtrace, trying to match each element with block1[i1] (lines 9–12) and with block2[i2] (lines 13–17).

As for matching block1, if the current trace element matches the first event of block1 (line 10), the variable i1 is set to 2 and pt1 is updated with the current timestamp. Otherwise, if the next event of block1 to be matched is not the first, an auxiliary function match (shown in Algorithm 3) is called to match the event defined at i1.

Function match takes as input five parameters: an events chain block, a tuple (i, pt) of which i (i > 1) stores the position (within block) of the event to be checked, pt stores the timestamp of the previous trace element (if it was a match for block[i−1]), and a trace element (i, t) to be matched with block[i]. The function updates the tuple (i, pt) if the input element is a match for block[i]; else it sets the tuple to (1, 0). More specifically, if the current element is an occurrence of the event defined at block[i] (with i > 1) (line 1), and if the constraint on the distance (if defined1) from the previous event at block[i−1] holds (line 4), variable i is incremented and variable pt is updated with the timestamp of current trace element (line 4). Otherwise, the tuple (i, pt) is reset on line 5.

At line 12 of function checkPatternPrecedenceAtLeast, if the matched event is the last event of block1 (meaning that an occurrence of block1 has been found preceding any possible occurrence of block2), variable flag1 is set to false.

As for matching block2, if the occurrence of the first event of block2 is detected (line 13), there are two cases that may lead to a violation. Either block1 has not been fully matched yet (i.e., variable flag1 is true) or it has been fully matched but the timestamp of the current trace element (matching the first element of block2) violates the constraint on the distance between block1 and block2. If one of these two conditions holds (line 14), the algorithm goes on to match2 the rest of block2 (line 16), since the current element might actually not be part of a whole instance of block2. If both of these conditions are not satisfied (line 15), it means that there is no violation, i.e., the first block has been fully matched and the distance constraint between the two blocks is satisfied; hence, there is no need to match3 the remainder of block2 and the algorithm returns true. Otherwise the algorithm invokes function match to match the current element with block2[i2] (line 16). The function reports a violation whenever block2 is fully matched (line 17); otherwise, it returns true after the loop (line 18).

E. Tool Implementation

We have implemented our model-driven approach for trace checking of TemPsy properties in a tool named TEMPsy-CHECK. The tool is based on Xtext [17] and Eclipse OCL; it is publicly available online [18].

TEMPsy-CHECK takes as input a log file in CSV format and converts it to an intermediary representation (called “trace description”), defined as a domain-specific language using the Xtext framework. We have introduced this intermediate representations for traces to support, in the future, multiple input raw formats for trace logs. The trace description is then used to generate an XMI file corresponding to an instance of the trace model. The tool also takes as input a list of TemPsy properties and converts them into an XMI-based format. The evaluation of the OCL constraints corresponding (as described in the previous subsections) to the properties to check on the trace is done using the OCL checker included in Eclipse OCL, whose output (true/false) is then returned to the user.

IV. Evaluation

A. Overview, Methodology, and Settings

The evaluation of TEMPsy-CHECK focuses on its scalability, since trace checking tools are expected to be able to handle very large traces. Indeed, traces may contain a huge number of events, depending on the time span captured by the log, the nature of the system to which the log refers to (e.g., several virtual machines), the types of events monitored (e.g., high-level message passing events or low-level method calls) [10]. In the evaluation, we assess the relationship between the time taken to check a property on a trace and the structural properties of the trace (e.g., length, distribution of events) and the type of property to check; we also compare the performance of TEMPsy-CHECK with a state-of-the-art alternative technology.

We have conducted our evaluation using a benchmark consisting of a subset of the properties extracted from the requirements specification documents of one of the eGovernment applications developed by our public service partner. Out of the 47 properties documented in the case study, in this paper, for space reasons, we report only on the evaluation with the 12 properties using a globally scope4. They are the

1The pseudocode for dealing with the case when the distance between block elements is not defined has been omitted for simplicity.
2Notice that in this case a violation is reported only if block2 is fully matched (line 17).
3This is derived from the formal semantics of the preceding operator, in which the match of the first block, at the proper time distance, is defined as the consequent of the logical implication that formalizes the semantics of the operator.
4The complete evaluation report and the data related to the remaining properties (defined using other scopes) are available in [8].
most challenging in terms of scalability, since the semantics of this scope guarantees that the pattern (used in the property to check) will be evaluated throughout the entire length of the trace. The 12 properties used for the evaluation are listed in a sanitised form in Table I. The actual textual description of each property has been omitted for confidentiality reasons; the events involved in the property (e.g., “a citizen requests a certificate”) are denoted using uppercase letters.

These properties have been checked on synthesized traces. We use synthesized traces instead of real ones because: 1) based on our experience, real traces are often inadequate to cover a large range of trace lengths and a variety of properties; 2) we wanted to have great diversity in terms of occurrences of patterns in the traces, while being able to control this diversity; 3) real traces are valuable to assess fault detection capabilities, while in our case we focus on the scalability of the approach; 4) if we had used real traces, they could not be shared for forming a public benchmark, even when sanitized. By using synthesized traces we are able to control in a systematic way the factors (such as trace length, sub-trace(s) length and position, frequency and distance of events) that could impact the execution time for a specific type of property. At the same time, we are also able to randomly set other factors, to avoid any bias.

To synthesize these traces we implemented a trace generator program. This program allows for generating diverse (in terms of size, patterns, scopes, event positions and frequency) and realistic traces, without introducing bias. The generator takes as input a property, the desired length of the trace to generate and additional parameters depending on the type of property given in input and the factors one wants to control. To determine the position in the trace of the events occurring in the input property, the generator takes into account the temporal and timing constraints prescribed by the semantics of the scope and the pattern used in the property. Positions in the trace that are deemed not relevant for the evaluation of the property are filled with a dummy event. The trace generation strategy depends on the scope and pattern used in each property and is discussed in detail below. As an additional contribution of the paper, we also make available in the TemPsy-Check GitHub repository [18] the artifacts used in the evaluation, to contribute to the building of a public repository of case studies for evaluating trace checking/runtime verification procedures.

Moreover, to assess scalability, we also need a baseline of comparison. Such baseline should be the best available tool that can be considered an alternative to TemPsy-Check. We identified such a tool among the participants to the “offline monitoring” track of the 2014 and 2015 international Competition on Software for Runtime Verification (CSRVT 2014 [14] and CSRVT 2015 [15]). Out of the tools (LogFire [19], MARQ/QEA [20], MonPoly [13], RiTHM2 [21], RV-Monitor [22], STEPR) qualified for the final round of the two editions of the competition, LogFire, RiTHM2, and STEPR were not publicly available at the time of writing. Among the remaining three, MARQ/QEA does not support any input language and uses an automata-based formalism: the user has to write a Java program that builds the automaton corresponding to the property to check; on the other hand, both MonPoly and RV-Monitor support a specification language that is conceptually close to TemPsy. We chose MonPoly over RV-Monitor because it achieved a better score (293.54 vs 265.39). MonPoly supports MFOTL, a metric first-order temporal logic, as specification language; to perform the comparison with it, we manually translated the properties into MFOTL formulae. These formulae are also available in the TemPsy-Check GitHub repository [18]. We remark that our goal, in this comparison, is not necessarily to fare better than existing technology, but to verify that an MDE approach to trace checking is viable from a scalability standpoint.

The results reported in this section have been measured on a desktop computer with a 3 GHz Intel Dual-Core i7 CPU and 16GB of memory, running Eclipse DSL Tools v. 4.6.0M3 (Neon Milestone 3), JavaSE-1.7 (Java SE v. 1.8.0_25-b17, Java HotSpot (TM) 64-Bit Server VM v. 25.25-b02, mixed mode), Eclipse OCL v. 6.0.1, and MonPoly v. 1.1.6. All measurements reported correspond to the average value over 100 runs of the check procedure (on the same trace, for the same property).

B. Scalability analysis

To assess the scalability of our approach, we address the following research questions:

- **RQ-G1** What is the relation between the execution time of the trace checking procedure and the length of a trace?
- **RQ-G2** What are the types of pattern most taxing on the execution time?
- **RQ-G3** How does TemPsy-Check compare with MonPoly in terms of execution time?

1) **Trace Generation Strategy**: In the case of the **globally** scope the generation of the trace is determined only by the semantics of the pattern used in the property. For the **universality** pattern, we repeat the event occurring in it through the entire trace.

For the **existence** pattern, we first determine the number \(n \) of occurrences to generate, based on the bound indicated in the

Moreover, the first version of RiTHM is available but it only supports run-time verification of C programs. As for STEPR, no reference is available in the competition report [14] or online.
property. If the bound is expressed as “at least m” or “at most m” we randomly generate n with a uniform distribution on the range $[m, \text{trace length}]$, respectively $[0, m]$; if the bound is expressed as “exactly m”, n is set to m. Afterwards, we randomly generate (with a uniform distribution on the range $[1, \text{trace length}]$) n positions in the trace where to put the occurrences of the event specified in the property.

For the absence pattern, if the property has the form never A, the trace is generated without any occurrence of the event A. If the property has the form never exactly $m A$, we randomly generate n with a uniform distribution on the range $[0, \ldots, m − 1, m + 1, \ldots, \text{trace length}]$.

In the case of a property containing a precedence or response pattern, we generate a number of occurrences of events (involved in the property) equal to 10% of the length of the trace. This value has been selected based on the frequency of events observed in the application whose requirements are expressed through the properties shown in Table I. The simplest case is for a property like globally B responding at most 10 to A: assuming a trace length of $1M$, we would generate $50K$ occurrences of the pattern (i.e., pairs of A and B), for a total of $100K$ occurrences of A and B. More complex cases have to take into account the event chains used in the property. For the distribution of the occurrences of the pattern across the trace we have to consider the distance between events. For example, for the property aforementioned, each occurrence of the response pattern would span over at most 10 time units; this is the maximum distance between an occurrence of A and the corresponding occurrence of B. The number of pattern occurrences to generate and the maximum time span of each pattern occurrence are the parameters used to randomly allot the pattern occurrences over the trace, according to a uniform distribution.

2) Evaluation: We run the trace checking procedure for properties P1–P12; each property was checked on ten different traces, with length (i.e., number of events) varying from 100K to 1M. The twelve plots in Fig. 4 depict the execution time of TEMPSY-CHECK (denoted by \circ) and of MONPOLY (denoted by \ast) for each of the properties P1–P12, for different trace lengths. The execution time for both tools has been measured using the time Unix command.

We answer RQ-G1 by observing that the time taken by TEMPSY-CHECK ranges from about one hundred milliseconds to a bit more than two seconds, and increases linearly with the length of the trace, depending on the type of property. To answer RQ-G2, the results show that the properties more taxing on the execution time are those with a response or precedence pattern (e.g., P5, P6, P7, P9, P11). Regarding RQ-G3, we observe that the time taken by MONPOLY ranges from about one hundred milliseconds to a bit less than eight seconds, and is also linear with respect to the length of the trace. MONPOLY takes longer for checking properties with a (bounded) existence pattern (e.g., P3, P4) and with a precedence pattern that contains a distance constraint of type “at least” (e.g., P10). We can answer RQ-G3 stating that, except for the case of properties P3, P4, and P10, the two tools perform almost similarly, with absolute differences between execution times that are quite small (less than one second). In the case of properties P3, P4, and P10, TEMPSY-CHECK performs much better than MONPOLY. A possible explanation for the slower time of MONPOLY for these properties could be the structure of the corresponding MFOTL formulae, which contain several nested temporal operators to express the “eventually at least/at most” pattern (P3, P4) and an event chain (P10).

The execution times discussed above include not only the time to perform the actual check, but also the time to parse/load the trace to check. The average trace loading time for TEMPSY-CHECK, measured through instrumentation, ranges from 55 ms to 550 ms, growing linearly with respect to the trace length. Notice that for checking a single property on a trace with TEMPSY-CHECK, the trace loading time can take, for larger traces, from one-fourth to one-third of the total execution time. Although these values for the trace loading time can seem high, we expect the loading time not to impact on the total execution time in the case of batch property checking, i.e., checking multiple properties at the same time on a trace. Checking in batch mode a set of properties, rather than individual ones, is common in enterprise scenarios in which, for example, the set of properties to check is decided by the entity that has invoked a business process.

To further investigate this aspect, we compared the execution time of TEMPSY-CHECK and MONPOLY for batch checking ten properties (P3–P12), over ten traces, with length ranging from 1M to 10M. These traces have been obtained by concatenating the traces used for the experiment described above, and by renaming the events within each trace being concatenated, to avoid name clashes. We executed TEMPSY-CHECK by providing in input the list of the ten properties to check. We executed MONPOLY by providing in input one formula corresponding to the conjunction of the ten formulae equivalent to properties P3–P12. Figure 5 shows the result of the comparison: the performance of the two tools are similar for traces of length up to six millions; over this threshold, MONPOLY gets slower.

C. Discussion

The results presented above (as well as the additional data presented in the technical report accompanying this paper [8]) show the feasibility and benefits of applying our model-driven approach for trace checking in realistic settings.

Our TEMPSY-CHECK tool is a viable technology from a performance standpoint point as it can load and analyze very large traces (with one million events) in about two seconds. The tool scales linearly with respect to the length of the input trace to check. Notice that “the input trace to check” can correspond also to a sub-trace of an actual, larger execution trace. This can be the case for properties referring to events occurring in time windows (see, for example, the service provisioning patterns presented in [24]). In these cases, one

\footnote{The trace loading time is not available in the output of MONPOLY.}
can first isolate from the original trace the window of interest and then feed the latter to our tool.

We have also compared the performance of our implementation to MonPoly, a comparable, state-of-art tool. Despite the fact that MonPoly is a tool that implements a dedicated algorithm [4] for trace checking of temporal logic properties, our TempSy-Check tool (which relies on a generalist OCL checker) not only achieves similar results, but in some cases it also performs better than MonPoly.

We also remark that writing some of the properties in MFO TL was challenging (despite previous knowledge of MFO TL), much more than when using TemPsy. This challenge could be overcome by defining properties in TemPsy and then providing an automatic translation to MFO TL formulae or, dually, by building a system of property specification patterns on top of MFO TL. In both cases, one could have relied on MonPoly for trace checking. While this could be in principle a viable approach, it would not fulfill requirement R1 (see section I), which entails to rely on standard constraint checking technology — complying with OMG specifications — for checking temporal properties. We remark that this requirement is not specific to this project, but is more general because there are many contexts where solutions have to be engineered by using standardized MDE technologies.

Overall, we can conclude that a model-driven approach to trace checking of realistic temporal properties is viable, even on very large traces, and performs similarly to or better than the state-of-the-art, depending on the type of properties.
Threats to validity: The main threat to validity to the results presented above is the intrinsic presence of errors in the toolchain we developed, which might not reflect the semantics of TemPsy. We tried to compensate for this by thoroughly testing the checker with traces and properties for which the oracle was previously known. Another potential threat is the fact that we have performed trace checking on synthesized traces. Real execution traces might be different, in terms of events occurrences and time distances. However, this threat does not affect our research question on scalability, as we want to analyze the execution time as a function of a number of parameters (e.g., trace length), while varying randomly other aspects (e.g., position of certain events). As explained at the beginning of this section, for that purpose, synthesized traces are better than real ones as they guarantee we have the data to perform our analysis by controlling certain factors and varying others randomly. Another threat is given by the use of Eclipse OCL; one could get different results by using another OCL checker, with lower performance. We chose Eclipse OCL for its scalability (see [25]). Finally, as for the comparison with MonPoly, we remark that its specification language (MFOTL) is more expressive than TemPsy (e.g., by supporting first-order quantification), hence the performance of MonPoly could have been negatively affected by the more complex implementation needed to support a richer specification language. Moreover, the MFOTL properties that we wrote to perform the comparison described in subsection IV-B could be written in a different, but semantically-equivalent form that could lead to different results. We tried to mitigate this aspect by having the MFOTL formulae written by a person with ten years of experience in formal specification (and verification) with temporal logics. Furthermore, we believe that in practice, it might be hard anyway for practitioners (with limited background in temporal logic) to find out what is the optimal way to express a property in MFOTL.

V. Related Work

Model-driven technologies have been used in various work on (run-time) trace and/or assertion checking. The model-driven approach for assertion checking proposed in [26] relies on the principles of aspect-oriented programming and uses a technique called two-level aspect weaving. First, cross-cutting assertions defined using ECL, an extension of OCL, are woven into a model defined within GME (Generic Modeling Environment [27]) and then the code for checking the contracts specified in the models is generated using model-driven program transformations [28]. ECL does not support the expression of temporal constraints. An approach conceptually similar to ours is proposed in [29], in which pre- and post-conditions are expressed with visual contracts defined using graph transformations and then transformed into a code-level representation as JML (Java Modeling Language) assertions. The pre- and post-conditions that can be expressed in this framework are functional and do not support temporal expressions. The approach for model-driven monitoring of Web services proposed in [30] considers temporal properties expressed using property specification patterns [7] and defined with a subset of UML 2.0 Sequence Diagrams; these properties are checked at run time by translating sequence diagrams into non-deterministic finite automata. However, these properties, differently from those that can be expressed with TemPsy, do not support expressing timing requirements. Our model-driven approach for trace checking can be easily applied in scenarios where other trace models are used, as long as OCL invariants can be expressed on them; examples of these models are those proposed in [31] (for the reverse engineering of UML sequence diagrams from traces) and [32] (tailored for the exchange of traces corresponding to large program call trees).

This work is also related to the more general area of trace checking/run-time verification [33]. The majority of the approaches proposed in this area — for example, [4], [34]–[36], including previous work of some of the authors [9], [10], [37] — focuses on the verification of temporal properties expressed using a pattern-based specification language. These approaches define the trace checking/run-time verification problem in terms of a word problem, i.e., the problem of whether a given word is included in some languages, and rely on formal verification tools like model checkers or SAT/SMT solvers. In our approach, we use a domain-specific specification language (TemPsy) and rely on standard constraint checking technology complying with OMG specifications.

VI. Conclusion and Future Work

Trace checking is a procedure for checking the compliance of a system with respect to its requirements, by analyzing the log of events produced by the system during its execution. In this paper we have presented a scalable and practical solution for trace checking of the temporal requirements expressed using a pattern-based specification language. Our solution can be used in contexts where: model-driven engineering is already a practice; relying on standards and industry-strength tools for property checking is a fundamental prerequisite; the checking procedure should scale with respect to the length of the trace, to allow checking very large traces, and should complete within practical time limits, to enable real-time log analysis.

The results of the evaluation show the feasibility and benefits of applying our model-driven approach for trace checking in realistic settings. TemPsy-Check can load and analyze very large traces (with one million events) in about two seconds; it scales linearly with respect to the length of the trace to check. The results also show that TemPsy-Check in practice performs similarly or better than the state-of-the-art, depending on the type of properties.

As part of future work, we plan to extend TemPsy-Check to provide a more informative output than the boolean result currently returned when violations are detected in a trace, by adding support for interactive inspection of violations.

ACKNOWLEDGEMENT

This work has been supported by the National Research Fund, Luxembourg (FNR/P10/03). The authors would like to thank the members of the Prometa team at CTIE.
REFERENCES

