
Transparent Reputation Management for Composite Web Services

Domenico Bianculli Walter Binder
University of Lugano
Faculty of Informatics
Lugano, Switzerland

domenico.bianculli@lu.unisi.ch
walter.binder@unisi.ch

Luigi Drago Carlo Ghezzi
Politecnico di Milano

DEEP-SE group - DEI
Milano, Italy

drago.luigi@gmail.com
carlo.ghezzi@polimi.it

Abstract

The dependability of composite services is largely af-
fected by their constituent Web services. Composite services
have to operate in an open and dynamically changing en-
vironment in order to leverage the best performing services
available at the moment. Hence, there is the need for an
efficient mechanism to provide reliable service rankings.

In this paper we present a novel, generic, and customiz-
able reputation infrastructure to automatically and trans-
parently monitor the execution of composite services, tak-
ing both functional and non-functional properties into ac-
count. The experienced Web service Quality-of-Service is
communicated to a configurable reputation mechanism that
publishes service rankings. Our reputation infrastructure
supports notifications upon changes in service reputation,
enabling self-tuning and self-healing properties in the exe-
cution of composite services.

We implemented our architecture using standard
technologies, such as BPEL and JavaEE. Performance
measurements show that our infrastructure causes only
moderate overhead.

Keywords: Reputation mechanisms, composite web ser-
vice execution, web service monitoring, middleware, BPEL.

1. Introduction

The dependability of composite services, such as work-
flows or business processes, is largely affected by their con-
stituent Web services1. Web service-based software archi-
tectures represent open-world software, as described in [4].
Composite services have to adapt to the open, dynamically
changing environment where remote services may fail or

1In this paper, we use the terms “service” and “Web service” inter-
changeably.

new services may be offered at any moment. The ability to
bind to required Web services at run time is a key mecha-
nism to cope with the challenges of open-world software.
As the market of available services for a given functional-
ity changes over the time, composite services that depend
on that functionality need to evolve, adapting their service
bindings so as to leverage the best performing services cur-
rently available.

Selecting the best service for a required functionality
presupposes a reliable and efficient mechanism to provide
the service rankings. For this purpose, reputation mecha-
nisms have been proposed [19]. They collect clients’ rat-
ings on experienced service behavior to compute the ac-
tual Quality-of-Service (QoS) delivered to clients and to
rank functionally-equivalent services accordingly. Reputa-
tion mechanisms therefore promote the sharing of service
monitoring information amongst clients. Researchers have
shown that reputation mechanisms can be designed to pro-
vide incentives that make honest reporting rational for the
clients [11].

However, current standard environments for the execu-
tion of composite services, such as BPEL [2] engines, do
not integrate any reputation mechanisms. Although it is
possible to program composite services that explicitly inter-
act with a reputation mechanism so as to report feedback on
service interactions and to dynamically choose the most ef-
ficient services, the needed development effort is prohibitive
in practice. Moreover, feedback reporting on both experi-
enced service functionality and QoS presumes an appropri-
ate monitoring infrastructure.

To overcome these issues, we designed a reputation in-
frastructure that serves the following goals:

1. to provide a mechanism for assessing service behavior
and ranking functionally-equivalent services based on
past interactions with these services by other clients;

2. to support user notifications when particular
reputation-related events occur, allowing for an

early discovery of possible failure situations;

3. to ensure reputation-enabled execution of composite
services in a way that is completely transparent to the
programmer, who can concentrate exclusively on the
functional aspects of the composite service;

4. to allow for an open and extensible platform support-
ing a high degree of customization of the way services’
reputation is computed.

The scientific contributions of this paper are the pro-
posed architecture of our reputation infrastructure, enabling
the transparent integration of reputation mechanisms in
standard execution environments for composite services, as
well as our reference implementation built from state-of-
the-art middleware technologies.

Our architecture includes a customizable reputation
mechanism that is integrated with a customizable UDDI
service repository, thus enabling reputation-aware service
selection. The execution environment running the compos-
ite service (a BPEL engine) is instrumented for monitoring
service invocations and reporting feedback to a reputation
mechanism that computes services’ reputation.

The reputation mechanism supports subscriptions for
service functionalities, resulting in notifications upon
changes in service reputation and upon the availability of
better performing services for a given functionality, respec-
tively. These notifications enable the automated update of
service bindings, ensuring the automated evolution of com-
posite service in response to a dynamically changing service
market. Although, for example, upon receiving the notifi-
cation that the reputation of a service has dropped below a
given threshold, a client could replace the affected service
and hence avoid possible problems before they actually oc-
cur, in this paper we focus on the generic reputation infras-
tructure itself and do not address the concrete actions taken
upon reputation-related events, since these actions are spe-
cific to client policies.

To validate and evaluate our approach, we measured the
overhead caused by our infrastructure both for deployment
and execution of composite services. We explore separately
the different aspects of our instrumentation, service execu-
tion monitoring and communication with an external repu-
tation mechanism, to assess how much each of them con-
tributes to the overall observed overhead.

The rest of this paper is structured as follows. Sec-
tion 2 gives an overview of our reputation infrastructure.
Section 3 describes the specification languages we support
within the monitoring architecture underlying the reputa-
tion infrastructure. Section 4 presents the technique we use
to estimate service reputation. Section 5 explains the imple-
mentation of the main components. Section 6 presents the
results of our experimental evaluation. Section 7 surveys re-

lated work. Final remarks and directions for future research
are given in Section 8.

2. System overview

In the following, we describe the software architecture
of our reputation infrastructure, both at the server- and the
client-side. Afterwards, we explain the interactions among
the system components.

2.1. Server-side software architecture

The architecture of the reputation infrastructure com-
prises three main components: the enhanced registry, the
reputation manager, and the subscription manager.

Enhanced Registry. It is a UDDI-compliant registry ex-
tended with functionalities supporting the reputation
infrastructure. As a UDDI registry, it provides stan-
dard UDDI interfaces, which supports service publish-
ing and service discovery. The main extension this reg-
istry includes is the functionality to query for QoS es-
timations of registered services. The registry can be
queried either by providing a specific service TModel
or by providing the concrete service location and the
WSDL interface it complies to.

Reputation Manager. It provides functionalities to man-
age the services registered for reputation and to es-
timate their QoS. It exposes a public message queue
where service clients may post their feedback reports.
Moreover, the Reputation Manager receives UDDI-
related events from the Enhanced Registry. For in-
stance, when a new service is registered into the
service directory, this component creates the objects
needed to represent those entities inside the infrastruc-
ture and initializes their reputations to a default value.

The Reputation Manager is in charge of managing rep-
utation policies. The reputation policy is our abstrac-
tion for an algorithm that estimates service reputation.
Instead of providing an on-line algorithm for imme-
diately processing feedback reports as they arrive, we
decided to introduce a scheduler, which invokes repu-
tation policies periodically, to avoid minor fluctuations
in the reputation estimates, which could trigger unnec-
essary notifications.

This component is also aware of the concept of a rep-
utation era, which is a fixed length time interval dur-
ing which the reputation estimate of resources does not
change. All QoS reports received from clients during
this period are stored and then processed at the end of
the era. This implies that both updates and notifica-
tions of reputation-related events happen at the same

A1 A2

A3

A4

BPEL
service

Reputation Feeder

Event Manager

Monitor

Client

ServiceA

ServiceB
Reputation Manager

Subscription Manager

Enhanced Registry

 Server

Service
Provider

BPEL
engine

P1

P2

P3
D1

D2

F2

F1

R1

R2

Reputation Infrastructure

R2

other
service
clients

provides

Figure 1. System architecture and interactions

time, right after the end of an era and before the begin-
ning of the next one. This solution leads to steady QoS
estimations through aggregation of feedbacks received
within an era.

Subscription Manager. It provides functionalities to no-
tify service consumers when reputation-related events
occur and to manage the subscriptions to these events.

The reputation infrastructure supports two event types:
reputation decrease and availability of a service with
better reputation.

The former event is fired when the Reputation Man-
ager communicates that the reputation of a service has
dropped below a certain threshold. Service users are
thus notified of a possible failure condition by means
of these messages, so that countermeasures can be
taken. Upon subscription, each service client specifies
the services for which it should receive notifications
on reputation decrease and the reputation threshold for
each service.

The latter event is used to notify service clients when
the set of the “best” services compliant with a partic-
ular specification (i.e., the services with the currently
best reputation) changes. By means of these notifica-
tions, we let service clients always know which are the
best services available on the service market such that
when a possible failure occurs they may rebind to an-
other service, which exhibits a better behavior. Ser-
vice clients subscribe to these events by specifying the
WSDL interface they are interested in.

Furthermore, our reputation infrastructure includes some
components implementing side facilities, such as security-
related operations (log-in procedures and management of
access credentials).

2.2. Client-side architecture

At the client-side, the architecture comprises three com-
ponents:

Monitor. It monitors the behavior of external services used
by the BPEL service client, by checking some func-
tional and non-functional assertions.

Reputation Feeder. It provides methods to collect feed-
back reports and to send them to the server component
of our reputation infrastructure.

Event Manager. It provides functionalities to subscribe to
reputation-related events and to react to such notifica-
tions.

Figure 1 illustrates the components of the architecture,
both at the server-side and at the client-side. It also depicts
the messages exchanged when interacting with the reputa-
tion infrastructure, which will be described in the next sub-
section.

2.3. System interactions

A typical usage scenario of our reputation infrastructure
is the following one:

1. Service providers publish their services (e.g., services
A and B) using the UDDI-compliant interface offered
by the Enhanced Registry (message P1 in Fig. 1). In-
ternally, the Enhanced Registry notifies the Reputation
Manager that a new service has been registered, and
thus that a default reputation should be assigned to it
(message P2). The Enhanced Registry also notifies the
Subscription Manager such that it can notify interested
service clients of the availability of a new service (mes-
sage P3).

2. When service clients deploy their business processes
into the BPEL engine, the client part of the reputation
infrastructure logs into the server part (message D1),
in order to get access credentials for subsequent com-
munications. Service clients communicate the selected
service bindings to the server using the Event Manager
(message D2); in this way, clients subscribe to events
related to (the type of) services they use. For example,
the BPEL service depicted in Fig. 1 will communicate
to the Reputation Manager its bindings to services A
and B, used within the business process by the activi-
ties A1 and A3.

3. During execution, each time a client uses an external
service, the built-in monitor evaluates a rule associ-
ated with the interaction. The result of the evaluation
is sent to the Reputation Feeder (message F1), which
generates a feedback report on the behavior of the ex-
ternal service, to be sent (message F2) to the Reputa-
tion Manager, on the server component of the reputa-
tion infrastructure.

4. After collecting reputation feedback reports, the Rep-
utation Manager updates the reputation estimation of
the services registered in the system. Whenever the
Reputation Manager computes a new value of the rep-
utation of a service, it notifies the Subscription Man-
ager (message R1). The latter can then either commu-
nicate (message R2) to all subscribed clients that the
reputation of a service dropped below a certain thresh-
old, or it can notify them that a new service imple-
menting a certain WSDL interface and with a better
reputation became available.

3. Monitoring languages

Within our reputation infrastructure, feedback messages
are defined as behavioral reports about a single service.
Since feedbacks originate from the evaluation of monitor-
ing rules, we require these rules to assert properties whose
evaluation depend on the interaction with a single service.
This requirement is enforced in the two languages for spec-
ifying monitoring rules, WSCoL and ALBERT, supported
by our reputation infrastructure.

WSCoL [5] (Web Service Constraint Language) allows
for asserting functional properties on the BPEL activities in-
teracting with external services, i.e., the invoke, receive, and
pick activities. Properties are expressed in the form of pre-
and post-conditions, and can refer only to input and out-
put variables of the activity or to historical variables stored
in previous rule evaluations: this guarantees that each WS-
CoL rule can only express properties about an interaction
with a single external service. Therefore, this language can

be used in our reputation infrastructure without any restric-
tions.

ALBERT [3] (Assertion Language for BPEL Process
Interactions) is a temporal logic language that can assert
both functional and non-functional properties of BPEL pro-
cesses. The high expressiveness of the language requires
some restrictions on the language for using it within our
reputation infrastructure.

First of all, feedback generation should be enabled only
for a specific type of formula, called Assumed Assertion in
ALBERT, which asserts properties on the external services
a BPEL process interacts with. Furthermore, the events
used in ALBERT predicates should be related only to the
activities that exchange messages with external services,
such as invoke, receive, pick, and onMessage event han-
dlers. Finally, each formula may contain references of at
most one external service.

4. Reputation estimation

The reputation infrastructure has been designed in an
open and extensible way, so as to support different meth-
ods for computing service reputation and to enable reputa-
tion estimation for new kinds of entities (e.g., the reputation
of a service provider could be defined by aggregating the
feedback reports received for all the services offered by the
same provider). The Reputation Manager ensures exten-
sibility through the installation of new reputation policies
provided as plugins.

The default reputation policy plugin in our reference im-
plementation estimates the reputation of each single ser-
vice published in the infrastructure by using a binary-based
rating approach with reputation propagation. Reputation
propagation captures the concept that the Reputation Man-
ager builds reputations by using indirect knowledge of ser-
vices. Binary-based means that service clients can rate ser-
vices by using only boolean values. These values corre-
spond to the evaluation of logical formulae associated with
monitoring rules, from which feedback reports are created.

This binary-based rating approach is based on the
endorsements-refusals ratio algorithm. It generates the rep-
utation by computing the ratio of the number of positive
feedbacks and the total number of feedbacks received until
the computation of the estimation is triggered by the system.

Let S be the set of services published in the reputation
infrastructure; F be the set of feedbacks f , where each f
is a tuple 〈s,v, t〉, with s ∈ S being the service that is the
object of the feedback, v ∈ {0,1} the value of the feedback
and t ∈R+ the time-stamp at which the feedback is received
at the server. Let Fs,t = { f ∈ F | f .s = s∧ f .t <= t }, s ∈
S, t ∈ R+, be the feedback set, i.e, the set of the feedbacks
received for a service s until time t; let P(s, t) = ∑ f∈Fs,t f .v
be the amount of endorsement received for service s un-

til time t, and N(s, t) = |Fs,t | be the number of total feed-
backs received for a service s until time t. The reputation
ρ(s, t) for a service s at instant t is then computed using the
endorsement-refusals ratio as:

ρ(s, t) =
P(s, t)
N(s, t)

5. Implementation

The reputation infrastructure has been entirely imple-
mented as a JavaEE compliant application; the reason for
this choice is that the JavaEE platform is the de facto stan-
dard for the development of back-end and distributed appli-
cations.

The Reputation Manager and the Subscription Manager
have been implemented by means of both stateless session
beans and message driven ones.

Most of the functionalities of the Enhanced Registry
have been implemented by means of stateless session beans;
standard UDDI services are instead provided by means
of Web service beans and by the Grimoires UDDI reg-
istry [29]. Grimoires is a registry enhanced with function-
alities to add metadata information to UDDI concepts. We
adopted it both because it is open-source and because it al-
lows for storing reputation of services directly as a metadata
in the registry. Actually, we used a modified version of Gri-
moires, extended to support notifications about changes in
the database of UDDI entities.

Some operations, such as finding the best services com-
patible with a certain interface, require a notion of service
equivalence. We implemented a component that performs
the analysis of WSDL documents —associated with UDDI
TModels— based on syntactic checking2, and generates
sets of compatible services.

At the client-side, service monitoring is performed
within the ActiveBPEL engine [1]. The version we have
used has been already instrumented with the Dynamo mon-
itoring facility [6]. We extended this version with a func-
tionality to send feedback when a monitoring rule is eval-
uated, by using an aspect-oriented approach [13] so as to
minimize the impact on pre-existing code.

In terms of security, every message exchanged in the sys-
tem is secured against tampering; access to the system is
granted by means of a public key mutual authentication al-
gorithm.

2The use of TModels (as pointers to WSDL documents) for checking
service compatibility is recommended in the UDDI specifications. How-
ever, as pointed out by the semantic web research community, a syntac-
tic comparison of WSDL service specifications could not be sufficient for
determining service equivalence. Several efforts are dealing with this is-
sue [22, 20]; however they are out of the scope of this work. Therefore,
we designed the service equivalence checker as a replaceable component
to support different models of service equivalence.

6. Experimental evaluation

We evaluated the performance impact of our reputa-
tion infrastructure with two BPEL processes, the LoanAp-
proval process defined in the BPEL specification [2] and
the Radiology process available in the WSCoL monitoring
distribution[6]. In both cases, we implemented the external
services required by the BPEL process.

For each process, we measured both the BPEL pro-
cess deployment time and the process execution time in
three different configurations: (original) vanilla BPEL en-
gine without any instrumentation; (monitor instrumenta-
tion) BPEL engine instrumented to support the Dynamo
monitoring facility; (complete instrumentation) BPEL en-
gine instrumented to support both the monitor and the rep-
utation infrastructure.

For our measurements, all components of our infrastruc-
ture as well as the external services required by the two
BPEL processes were started on a single machine, an In-
tel Centrino Duo T2300 CPU with 2GB RAM, running
GNU/Linux. To ensure reliable measurements, we removed
unnecessary processes as much as possible. The reputa-
tion infrastructure was deployed on JBoss AS 4.2.0-GA.
We also used MySQL 5.0.45 as DBMS, ActiveBPEL 2.5 as
BPEL engine, and the Grimoires Enhanced Registry 1.2.3
as UDDI registry. The BPEL engine and the Grimoires reg-
istry were deployed on Apache Tomcat 5.5.25.

Regarding deployment time, we measured the wallclock
time taken by the BPEL engine to deploy the process. For
each experiment, the application container was restarted.
Concerning process execution time, we ran an external
client that invoked the BPEL process 10 times with dif-
ferent parameters and we measured the overall wallclock
time taken by that client. Due to the complexity of our
middleware, measurements are not exactly reproducible;
this is a well-known phenomenon, for example in Java-
based environments, where measurement variances due to
application-inherent non-determinism are often amplified
by differences in thread scheduling, dynamic just-in-time
compilation, or garbage collection [8]. In order to com-
pensate for the measurement variances, we repeated each
experiment 10 times (under the same settings) and reported
the geometric mean of the 10 trials.

As for the test configuration of the reputation infrastruc-
ture, we set the reputation era interval to 10s, and we used
the endorsements-refusals ratio as reputation policy.

Table 1 shows the measured deployment time and the ex-
ecution time for each process. For each trial, in addition to
the execution time, we also show the relative overhead fac-
tor (“ovh”) with respect to the measurement in the original,
vanilla setting.

At deployment time, performance degradation is mostly
due to the reputation infrastructure instrumentation. In fact,

Table 1. Performance Analysis
Deployment Time

original monitor complete
instrumentation instrumentation

LoanApproval [s] [s] ovh [s] ovh

trial1 3.96 4.12 4.04% 6.91 74.49%
trial2 3.85 4.15 7.79% 6.72 74.55%
trial3 4.03 4.08 1.24% 6.82 69.23%
trial4 3.84 4.13 7.55% 6.74 75.52%
trial5 4.05 4.19 3.46% 6.83 68.64%
trial6 4.01 4.08 1.75% 6.94 73.07%
trial7 3.91 4.08 4.35% 6.72 71.87%
trial8 4.02 4.18 3.98% 6.92 72.14%
trial9 4.01 4.18 4.24% 6.91 72.32%
trial10 3.99 4.11 3.01% 6.87 72.18%

Geo. mean 3.97 4.13 3.63% 6.84 72.37%

Radiology [s] [s] ovh [s] ovh

trial1 4.11 4.47 8.76% 11.40 177.37%
trial2 3.97 4.12 3.78% 10.62 167.63%
trial3 4.24 4.43 4.48% 10.75 153.50%
trial4 3.87 4.25 9.82% 10.57 173.04%
trial5 3.95 4.31 9.11% 10.94 176.78%
trial6 4.08 4.38 7.35% 10.91 167.36%
trial7 4.00 4.18 4.50% 10.13 153.17%
trial8 3.80 4.09 7.63% 9.37 146.66%
trial9 3.98 4.24 6.53% 11.22 182.14%
trial10 4.04 4.13 2.23% 9.83 143.49%

Geo. mean 4.00 4.26 5.87% 10.56 163.58%

Execution Time
original monitor complete

instrumentation instrumentati7on

LoanApproval [s] [s] ovh [s] ovh

trial1 0.39 0.48 23.08% 0.57 46.15%
trial2 0.35 0.45 28.57% 0.59 68.57%
trial3 0.37 0.52 40.54% 0.65 75.68%
trial4 0.30 0.41 36.67% 0.43 43.33%
trial5 0.45 0.54 20.0% 0.68 51.11%
trial6 0.31 0.38 22.58% 0.57 83.87%
trial7 0.36 0.51 41.67% 0.59 63.89%
trial8 0.36 0.42 16.67% 0.61 69.44%
trial9 0.38 0.44 15.79% 0.65 71.05%
trial10 0.41 0.51 24.39% 0.73 78.05%

Geo. mean 0.37 0.46 25.55% 0.60 63.67%

Radiology [s] [s] ovh [s] ovh

trial1 24.78 33.52 35.27% 41.51 67.51%
trial2 21.35 29.75 39.34% 38.65 81.03%
trial3 23.99 28.92 20.55% 37.89 57.94%
trial4 27.63 31.50 14.01% 42.59 54.14%
trial5 22.10 29.73 34.52% 39.82 80.18%
trial6 23.50 34.97 48.81% 37.84 61.02%
trial7 22.84 29.65 29.82% 41.56 81.96%
trial8 27.35 33.24 21.54% 36.92 34.99%
trial9 24.89 28.63 15.03% 40.93 64.44%
trial10 23.21 29.73 28.09% 38.79 67.13%

Geo. mean 24.09 30.90 26.68% 39.61 63.35%

during this phase, the reputation infrastructure has to ana-
lyze the business process and the WSDL definitions of the
external services it uses, to find the remote services within
the Reputation Manager’s internal registry. The complex-
ity of this phase is proportional to the number of external
services the business process interacts with. Indeed, in the
case of the Radiology process, the analysis takes more time
than in the case of the LoanApproval process, because the
former interacts with 8 remote services, whereas the latter
interacts only with 2 remote services. This explains why the
complete instrumentation of the Radiology process causes a
deployment overhead of 164% on average, while it results
only in 72% overhead for the LoanApproval process.

Concerning process execution, the relative overhead due
to the instrumentation code is surprisingly uniform for both
processes, albeit their execution time in seconds is signif-
icantly different. On average, the overhead caused by the
monitoring is 26–27%, whereas the overhead for complete
instrumentation is about 63%.

We conclude that neither the overhead upon process de-
ployment nor the run-time overhead upon process execution
is prohibitively high. Thus, our reputation-aware process
execution infrastructure can be readily used in practice.

7. Related work

Several mechanisms to evaluate trust and reputation have
been proposed in literature; see [9] for a complete survey
and [19] for a classification of such mechanisms driven by
the concepts of contextualization and personalization.

Although in this paper QoS refers to the experienced ser-
vice behavior (including both functional and non-functional
aspects), often in the context of service-oriented architec-
tures, QoS typically denotes the performance metrics of
services [21]. Approaches that select services based on
QoS usually extend service registries to support this type
of information. An example is UDDIe [23], which extends
UDDI with support for the concept of blue pages, i.e., infor-
mation on the QoS properties of a service, which are pub-
lished by service providers and can be used in queries by
service clients. Match-making between properties guaran-
teed by providers and properties required by clients relies
upon the find operators defined in the standard UDDI spec-
ification. A similar extended registry is described in [28],
where a service broker performs QoS-based selection by us-
ing an ontology reasoning mechanism for match-making. A
common weakness of these approaches is that they rely on

the assumption that providers are honest and only advertise
QoS properties that they can guarantee.

In [17], the authors propose a conceptual model for
Web service reputation; this model is at the basis of an
agent-based trust framework for service selection, described
in [18]. In contrast to our approach, the authors use a differ-
ent architectural style, where a software agent is attached to
each Web service; the agents are in charge of querying and
reporting service reputation. Each service client builds its
reputation of services based on the local information pro-
vided by its neighbours.

A QoS-based service selection model is presented
in [14]. The model takes into account the feedback from
users as well as other business-related criteria; moreover it
is also extensible, in order to support multiple QoS selec-
tion criteria. In comparison to our approach, it is neither
pro-active (because variations of service reputation are not
disseminated to other service clients), nor transparent (since
service requesters are required to support specific mecha-
nisms for ad-hoc execution monitoring and feedback report-
ing).

A service recommendation system is proposed in [16].
In this system, clients rate services by using a compara-
tive matrix containing the QoS values advertised by the
provider, and the QoS values measured at run time. How-
ever, the system does not use Web service standards for ser-
vice discovery and selection, but relies on ontology-based
descriptions. Moreover, user feedback reporting is not au-
tomated.

In [27], the authors describe a method to collect monitor-
ing data from clients and to use this information for service
recommendations. However, the supported QoS metrics are
limited: they support only metrics related to client side per-
formance, such as throughput, response time, or latency.

A collaborative filtering approach to derive prediction of
QoS of Web services that were not used yet, based on the
experience of consumers of similar services, is proposed
in [24]. However, the whole approach is poorly integrated
in the execution environment and it is neither fully auto-
mated nor transparent. Moreover, it supports only the pre-
diction based on the evaluation of timeliness-related QoS
properties.

The approach described in [30] adopts a point of view
that is complementary to ours. The reputation of a compos-
ite service is derived based on the reputation of the single
services used within the composition. The reputation mech-
anism used to compute the reputation of the single services
is similar to ours.

The problem of trust and reputation management in open
dynamic environments is discussed in [31]. The authors
propose some guidelines to build self-organizing referral
networks as a means for establishing trust in open envi-
ronments. However, the technology-agnostic, simulation-

based approach adopted in the paper does not allow for a
concrete use in Web services-based architectures.

In an earlier paper, we proposed [7] an architecture to
share reliable service quality information amongst clients,
supported by a theoretical model of an incentive-compatible
reputation mechanism [10]. However, the requirement of a
bank paying for honest feedbacks, postulated by the theo-
retical model, made the implementation impractical.

Several approaches propose specification languages for
defining (non-functional) service behavior and propose an
associated monitoring architecture. Keller and Ludwig [12]
propose WSLA and focus on monitoring QoS properties
such as performance and costs. A model and an analy-
sis technique for reasoning on the monitorability of sys-
tems are described in [26]. SLAs are expressed using the
SLAng [25] language, whose semantics has been provided
using a model-denotational approach.

8. Conclusion and future work

In this paper we presented a reputation-aware service
execution infrastructure, which manages the reputation of
Web services used by BPEL orchestrations in an automated
and transparent manner.

We use monitoring techniques to collect information
about functional and non-functional properties of Web ser-
vice behavior. The resulting feedback data is sent to the
server component of our infrastructure, which computes a
reputation value for each service registered in the infras-
tructure. Reputation information is then propagated back to
the affected service clients, which can use it in order to bind
to the best available services in the market.

Regarding future work, we will explore methods to make
the reputation estimation context-aware such that multiple
reputation values can be associated with a service on the
basis of the context in which it operates. Moreover, based
on the work described in [32, 15], we will extend our sys-
tem with techniques for identifying unfair ratings and thus
evaluating raters’ credibility. This will be also the basis for
mechanisms to discourage clients from cheating when re-
porting feedback.

9. Acknowledgements

Part of this work has been supported by the EU project
“PLASTIC” (contract number IST 026995), by the EU
project “S-Cube” (funded within FP7/2007-2013 under Ob-
jective 1.2 “Services and Software Architectures, Infras-
tructures and Engineering”) and by the Swiss National Sci-
ence Foundation.

References

[1] Active Endpoints. ActiveBPEL engine. http://www.

activevos.com/.
[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,

F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business Process Execution Lan-
guage for Web Services, Version 1.1, May 2003.

[3] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spo-
letini. Validation of web service compositions. IET Softw.,
1(6):219–232, December 2007.

[4] L. Baresi, E. Di Nitto, and C. Ghezzi. Towards Open-World
Software. IEEE Computer, 39:36–43, October 2006.

[5] L. Baresi and S. Guinea. Towards dynamic monitoring of
WS-BPEL processes. In Proceedings of ICSOC’05, volume
3826 of Lecture Notes in Computer Science, pages 269–282.
Springer, December 2005.

[6] L. Baresi, S. Guinea, and L. Pasquale. Self-healing BPEL
processes with Dynamo and the JBoss rule engine. In Pro-
ceedings of ESSPE’07, pages 11–20. ACM, 2007.

[7] D. Bianculli, R. Jurca, W. Binder, C. Ghezzi, and B. Falt-
ings. Automated dynamic maintenance of composite ser-
vices based on service reputation. In Proceedings of IC-
SOC’07, volume 4749 of Lecture Notes in Computer Sci-
ence, pages 449–455. Springer-Verlag, September 2007.

[8] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rig-
orous Java performance evaluation. In Proceedings of OOP-
SLA’07, pages 57–76. ACM, 2007.

[9] A. Josang, R. Ismail, and C. Boyd. A survey of trust and rep-
utation systems for online service provision. Decis. Support
Syst., 43(2):618–644, 2007.

[10] R. Jurca, W. Binder, and B. Faltings. Reliable QoS Monitor-
ing Based on Client Feedback. In Proceedings of WWW’07,
pages 1003–1011, May 2007.

[11] R. Jurca and B. Faltings. Minimum Payments that Reward
Honest Reputation Feedback. In Proceedings of EC’06,
pages 190–199. ACM, June 2006.

[12] A. Keller and H. Ludwig. Defining and monitoring service-
level agreements for dynamic e-business. In Proceedings of
the 16th Conference on Systems Administration, 2002.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. Loingtier, and J. Irwin. Aspect-oriented program-
ming. In Proceedings of ECOOP’97, volume 1241 of Lec-
ture Notes in Computer Science, pages 220–242. Springer,
1997.

[14] Y. Liu, A. H. Ngu, and L. Z. Zeng. QoS computation and
policing in dynamic web service selection. In Proceedings
of WWW Alt. ’04, pages 66–73. ACM, 2004.

[15] Z. Malik and A. Bouguettaya. Evaluating rater credibility
for reputation assessment of web services. In Proceedings
of WISE’07. Springer, 2007.

[16] U. S. Manikrao and T. V. Prabhakar. Dynamic selection of
web services with recommendation system. In Proceedings
of NWESP ’05, page 117. IEEE Computer Society, 2005.

[17] E. M. Maximilien and M. P. Singh. Conceptual model of
web service reputation. SIGMOD Rec., 31(4):36–41, 2002.

[18] E. M. Maximilien and M. P. Singh. Toward autonomic web
services trust and selection. In Proceedings of ICSOC ’04,
pages 212–221. ACM, 2004.

[19] L. Mui. Computational Models of Trust and Reputation:
Agents, Evolutionary Games, and Social Networks. PhD
thesis, Massachusetts Institute of Technology, 2003.

[20] M. Nagarajan, K. Verma, A. P. Sheth, J. Miller, and
J. Lathem. Semantic Interoperability of Web Services -
Challenges and Experiences. In Proceedings of ICWS’06,
pages 373–382. IEEE Computer Society, 2006.

[21] L. O’Brien, L. Bass, and P. Merson. Quality attributes and
service-oriented architectures. Technical Report CMU/SEI-
2005-TN-014, CMU - Software Engineering Institute, Pitts-
burgh, PA, September 2005.

[22] S. V. Pokraev, D. A. C. Quartel, M. W. A. Steen, and M. U.
Reichert. Requirements and method for assessment of ser-
vice interoperability. In Proceedings of ICSOC’06, volume
4294 of Lecture Notes in Computer Science, pages 1–14.
Springer, 2006.

[23] A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker. UD-
DIe: An extended registry for web services. In Proceedings
of SAINT’03, pages 85–89. IEEE Computer Society, 2003.

[24] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. Per-
sonalized QoS Prediction forWeb Services via Collaborative
Filtering. In Proceedings of ICWS 2007, pages 439–446.
IEEE Computer Society, 2007.

[25] J. Skene, D. D. Lamanna, and W. Emmerich. Precise service
level agreements. In Proceedings of ICSE ’04, pages 179–
188. IEEE Computer Society, 2004.

[26] J. Skene, A. Skene, J. Crampton, and W. Emmerich. The
monitorability of service-level agreements for application-
service provision. In Proceedings of WOSP ’07, pages 3–14.
ACM, 2007.

[27] N. Thio and S. Karunasekera. Web service recommendation
based on client-side performance estimation. In Proceedings
of ASWEC ’07, pages 81–89. IEEE Computer Society, 2007.

[28] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and
J. Schiller. A concept for QoS integration in Web services. In
Proceedings of WQW 2003. IEEE Computer Society, 2003.

[29] S. C. Wong, V. Tan, W. Fang, S. Miles, and L. Moreau. Clus-
ter Computing and Grid 2005 Works in Progress: Grimoires:
A Grid Registry with a Metadata-Oriented Interface. IEEE
Distributed Systems Online, 6(10), October 2005.

[30] S. J. H. Yang, J. S. F. Hsieh, B. C. W. Lan, and J.-Y. Chung.
Composition and evaluation of trustworthy web services. In
Proceedings of BSN ’05, page 5. IEEE Press, 2005.

[31] P. Yolum and M. Singh. Engineering self-organizing referral
networks for trustworthy service selection. Systems, Man
and Cybernetics, Part A, IEEE Transactions on, 35(3):396–
407, 2005.

[32] Y. Zou, L. Gu, G. Li, B. Xie, and H. Mei. Rectifying prejudi-
cial feedback ratings in reputation based trust management.
In Proceedings of SCC 2007, pages 530–535. IEEE Com-
puter Society, July 2007.

