
SOABench: Performance Evaluation of
Service-Oriented Middleware Made Easy∗

Domenico Bianculli
†

Faculty of Informatics
University of Lugano
Lugano, Switzerland

domenico.bianculli@usi.ch

Walter Binder
Faculty of Informatics
University of Lugano
Lugano, Switzerland

walter.binder@usi.ch

Mauro Luigi Drago
DEEP-SE group - DEI
Politecnico di Milano

Milano, Italy
drago@elet.polimi.it

ABSTRACT
SOABench is a framework for the automatic generation,
execution and analysis of testbeds for evaluating the per-
formance of service-oriented middleware. Testbeds can be
characterized in terms of the composite services to execute,
the workload to generate, the deployment configuration to
use, the performance metrics to gather, the data analyses to
perform on them, and the reports to produce.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools; D.2.8 [Software Engineering]: Metrics—
performance measures

General Terms
Experimentation, Measurements, Performance

Keywords
Middleware, performance evaluation, web service composi-
tions, testbed generation, experiment automation

1. INTRODUCTION
Service-oriented architectures (SOAs) are realized by de-

ploying and executing several software services on the top
of a dedicated middleware infrastructure, hereafter named
service-oriented middleware, which offers different specific

∗This work has been partially supported by the EU un-
der the grant agreement no. EU-FP7-215483-S-Cube and
the IDEAS-ERC grant agreement no. 227977-SMScom; by
the Swiss NSF under the grant agreements no. 125604
and no. 125337-CLAVOS, and the Sinergia project SOSOA,
grant no. CRSI22 127386/1.
†This work was carried out while the author was an intern at
Mission Critical Technologies, Inc., on site at NASA Ames
Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

functionalities, such as service registration and discovery, as-
sembly of composite services, service execution, and service
management. Given its predominant role in the realization
of an SOA, it is very important to assess the performance of
its middleware components.

Evaluating the performance of distributed systems such
as service-oriented systems consists in, at a minimum, exe-
cuting a series of tests on different machines over different
networks, possibly using several remote clients. Each test
is characterized by a specific workload, and ends with the
collection and the computation of some performance metrics
(e.g., response time, throughput). When performed manu-
ally or with a limited amount of automation, this task can be
cumbersome and error-prone. While there have been several
proposals (e.g., Weevil [4]) for automating experimentation
for distributed systems, most of the tools are not tailored
to a specific domain and thus their adoption in the service-
oriented computing domain becomes impracticable. More-
over, the tools (e.g., Genesis [3], MaramaMTE [2]) specific
to the realm of SOAs mainly deal with the generation of
testbeds for (Web) services and service compositions, and
do not focus on the middleware components.

We addressed this problem in prior work [1], where we
illustrated the architecture of a framework for automating
experimentation with service-oriented middleware, and re-
ported its application in a case study about benchmarking
the performance of different BPEL engines.

We foresee the use of the framework for the evaluation
and comparison of the performance of different service exe-
cution platforms (e.g., BPEL engines), and for assessing the
impact of service-oriented middleware enhanced with differ-
ent capabilities (e.g., monitoring, reputation management,
self-healing, self-tuning), in various scenarios and under dif-
ferent workloads. Example questions that the framework
could help answering are:

• Which execution platform handles best the workload for
given experiments on a given platform?

• What is the scalability of a certain execution platform,
in terms of the maximum number of users and requests
it can handle without showing failures?

• What is the overhead on the service execution due to a
certain enhanced feature of the middleware (e.g., mon-
itoring, self-tuning)?

• In which settings does the use of feature X within a
middleware component outperform the use of feature
Y within the same component?

These questions may be posed by researchers active in the
service-oriented computing community, by enterprise ICT
analysts, in the context of business decisions making regard-
ing the implementation of SOAs in the enterprise, and by
developers of service-oriented middleware components, to
evaluate the performance and the scalability of their prod-
ucts under various workloads.

In this paper we give a brief overview of SOABench, the
implementation of the framework described in [1], built with
state-of-the-art technologies and targeting Web service-based
SOAs, executing service compositions described as BPEL
processes. SOABench is publicly available under the GPLv3
license at http://code.google.com/p/soabench.

2. SOABENCH AT A GLANCE
SOABench is composed of a testbed modeling environ-

ment and a tool chain, as depicted in Figure 1. The frame-
work relies on well-established model-driven engineering tech-
niques, such as model-to-model and model-to-text transfor-
mations, to design and generate the low-level artifacts re-
quired for executing an experiment.

The modeling environment includes a meta-model, which
establishes the concepts necessary to define the tests to run
and the testbed to use. This meta-model has been the basis
for defining a Domain Specific Language (DSL), which can
be used to design a testbed model for an SOA infrastructure.
Such a model is characterized by the composite services to
execute and the atomic services they invoke, the workload
to generate, the deployment configuration to use, the per-
formance metrics to gather, the data analyses to perform
on them, and the reports to produce. Atomic services can
be either references to the actual services, or mock-ups built
using a mathematical description of the QoS attributes (e.g.,
response time, throughput). Moreover, a testbed model can
include the definition of some events (e.g., the publication
of a new service in a registry) that should occur during the
execution of an experiment.

A testbed model is the input of the tool chain, which in-
cludes four main components. The first component is a set of
generators for creating executable versions of processes, the
mock-ups of the external services they interact with, and the
testing clients that create (concurrent) workload by invoking
processes. A test compiler translates the testbed definition
into a format understandable by the underlying platform
we use for executing experiments. The test driver steers
the experiment execution, and the test analyzer gathers and
processes measurement data, producing as output reports
including statistics computed from the measurements.

SOABench supports technology independence as a way to
cope with the heterogeneity of SOA middleware. The frame-

Test Compiler

Test Driver

Test AnalyzerTestbed
Model

DSL
Definition

Modeling
Environment Generators

Process

Workload

Service
Mock-ups

Tool chain

specifiedWith

Figure 1: Architecture of SOABench

work guarantees that the testbeds it generates are reusable
in as many settings as possible. This is achieved by treating
SOA components as black-boxes characterized by a generic,
common interface (e.g., the set of operations for deploying,
starting and stopping BPEL processes). Moreover, platform
dependencies are confined within a plug-in based mecha-
nism. In addition, performance metrics are measured at
the testbed infrastructure level, without the need for in-
strumenting the single components of the infrastructure by
inserting profiling code.

The typical usage scenario of SOABench comprises sev-
eral steps, which will be described below. All but the first
step are performed automatically by the framework; indeed,
the first one requires human intervention since it consists
in the definition of the testbed model. The model is speci-
fied using the aforementioned DSL; the tools included in the
modeling environment provide context assistance and consis-
tency checking. Subsequently, the model is processed by the
scripts provided with the framework, to generate the actual
components of the testbed: the mock-ups of the services to
be used, the testing clients, and the actual service composi-
tions (e.g., BPEL processes) to execute. Additional artifacts
generated during this phase include the deployment descrip-
tors of the previously mentioned components, and helping
scripts for starting/stopping them. For service mock-ups
and testing clients, the framework also generates traces that
mimic the non-functional behavior that each component will
exhibit at run time. Pre-computing this information con-
tributes to achieve experiments repeatability. Indeed, maxi-
mizing this goal is required to guarantee a fair comparison of
different reference settings, and to mitigate uncontrollable
factors in the measurement environment. However, given
the complexity of the infrastructure, measurements are not
exactly reproducible. To compensate for measurements vari-
ances, SOABench allows for repeating simulations several
times, by using the traces of the behaviors to simulate.

The low-level artifacts generated in the previous step are
then compiled to target the Weevil framework, which han-
dles the actual execution of the experiment. After execution,
SOABench automatically gathers all the execution logs, pro-
cesses them, and creates a series of reports, which illustrate
the results of the experiment with useful charts and statis-
tics. For each specific performance metric, data collection
and report generation are specified through a plug-in based
mechanism.

3. REFERENCES
[1] D. Bianculli, W. Binder, and M. L. Drago. Automated

performance assessment for service-oriented
middleware: a case study on BPEL engines. In Proc. of
WWW 2010. ACM, April 2010.

[2] J. Grundy, J. Hosking, L. Li, and N. Liu. Performance
engineering of service compositions. In Proc. of
SOSE’06, pages 26–32. ACM, 2006.

[3] L. Juszczyk, H.-L. Truong, and S. Dustdar. GENESIS -
a framework for automatic generation and steering of
testbeds of complex web services. In Proc. of ICECCS
2008, pages 131–140. IEEE Computer Society, 2008.

[4] Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L.
Wolf. Automating experimentation on distributed
testbeds. In Proc. of ASE 2005, pages 164–173. ACM,
2005.

